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Abstract. Understanding the exact location and species of urban trees and forests is cru-
cial for climate change mitigation and urban ecosystem management. To address this need,
we propose an automated method to detect and locate trees in urban areas using LiDAR
technology together with aerial RGB and infrared imagery. In addition, we have developed
a semi-automatic approach to create a tree species classification dataset using Google Street
View imagery. In future versions of this project, the integration of these methods will enable
the geolocation and identification of urban trees with minimal human intervention.
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1. Introduction

In recent years, two major trends have driven
innovation in large-scale, low-cost urban tree
inventories: the use of Convolutional Neural
Networks (CNNs, Albawi et al. 2017) for ab-
stract feature and object extraction in imagery,
and the increasing availability of detailed,
low-cost street-level imagery. Simultaneously,
remote sensing technologies such as Light
Detection and Ranging (LiDAR, Calvert
1990), aerial photography, and multispec-
tral and hyperspectral imagery have become
widely utilized in Earth Observation (EO) and
large-scale analysis (e.g, Rapinel et al. 2015).
The integration of these innovative remote

sensing technologies with advanced computer
vision algorithms enables the semiautomated
identification of urban trees and the automatic
extraction of their main metrics, providing a
more time-efficient and cost-effective alterna-
tive to field inventories.

Among the data sources that have recently
gained attention are street-level images from
Google Street View (GSV, Anguelov et al.
2010), a geospatial platform with global cover-
age that offers geocoded, standardized street-
level images in various formats and resolu-
tions at a relatively low cost. In the context
of smart urban forestry, GSV imagery com-
bined with computer vision techniques is ap-
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plied in three main areas: estimating the shade
provided by trees, quantifying perceived urban
canopy cover, and mapping the location of ur-
ban trees. These metrics serve as key indicators
for assessing the sustainability of cities.

The proposed experiment builds on exist-
ing results, as the first version of the solu-
tion, named ArbörIA, a digital twin for ur-
ban trees that combines computer vision and
machine learning to automate the inventory
of street trees. The project was proposed by
Föra - Forest Technologies1, funded by the
European project EUHubs4Data2 and devel-
oped together with CeADAR’s strategic re-
search and development service3 and Cineca
HPC data analytics group4. By leveraging and
integrating data from airborne LiDAR, aerial
orthoimages, and GSV, ArbörIA develops ad-
vanced algorithms to provide high-resolution,
reliable, and up-to-date geospatial information
on urban tree assets.

This paper presents the methods and results
developed within the ArbörIA project, an ex-
tension of the work presented by Rodrı́guez-
Puerta et al. (2022), and it is structured as fol-
lows: in Sect. 2 we introduce the approaches
and the technologies developed in the project;
we present and discuss the main results in
Sect. 3, while in Sect. 4 we summarise the
project and possible future scenarios.

2. Methods

In this section, we will go through the two dif-
ferent tasks in which ArbörIA project is organ-
ised, explaining the technologies and methods,
as well as the steps that we followed to ob-
tain the results that we will discuss in the next
section. The combination of these methods al-
lows the automatic geolocalisation and classifi-
cation of public green spaces in specific areas.
Although we discuss the tasks separately and
they could be used independently, it is useful
to stress the fact that the combination of them

1 Föra website
2 EUH4D website
3 CeADAR website
4 Cineca HPC website

represents the power and the main goal of the
project.

2.1. Urban trees geo-positioning

The objective of this task is to detect and po-
sition trees within an urban environment. To
achieve this, various data sources were utilised,
each with specific characteristics and limita-
tions tied to the quality of the remote sensors
used. The primary sources of data included:

– Aerial orthophotographs, which are
geo-referenced photographs, available
through the National Plan of Aerial
Orthophotographs (PNOA, Arozarena
et al. 2005). The images have a resolution
ranging from 25 to 50 cm, depending on
the area, and are updated every 2 to 3
years. This data provides a detailed visual
representation of the urban landscape.

– LiDAR technology is used to determine
distances from a sensor to objects or sur-
faces using a pulsed laser beam. In this
study, LiDAR devices mounted on drones
or airplanes were employed to generate a
point cloud consisting of X, Y, and Z co-
ordinates for each point on the terrain. The
point density varies from 0.5 to 4 points per
square meter, with some areas having even
higher densities. The data is freely acces-
sible via the CNIG Download Center5 in
digital files covering 2x2 km areas.

– Images at street level, obtained through
sources such as Google Street View,
OpenStreets6, and Bing Maps7, were used.
These images, in addition to being geo-
referenced, also provide information about
orientation and inclination, which is crucial
for accurate analysis. In this study, images
from Google Street View, accessed via its
API, were used.

– Multispectral images, particularly those
within the infrared spectrum, were also em-
ployed. The PNOA captures infrared im-
ages that are instrumental in classifying

5 CNIG website
6 OpenStreets website
7 Bing Maps website

https://fora.es/en/
https://euhubs4data.eu/
https://ceadar.ie/
https://www.hpc.cineca.it/
https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
openstreetmap.org
https://www.microsoft.com/en-us/maps
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Fig. 1. Validation regions sampled within the
city of Pamplona.

LiDAR cloud maps. However, access to
this data comes with an associated cost.

The methodology was applied to the city
of Pamplona, selected for its unique avail-
ability of high-density LiDAR data (14 points
per square meter), as well as comprehen-
sive Google Street View coverage and multi-
ple years of PNOA orthoimagery. To validate
the tree detection and positioning results, the
municipal urban tree inventory of Pamplona
was used. This inventory, a publicly accessi-
ble database, provides approximate locations
of trees, collected at the street level by local
authorities8.

For validation purposes, eight circular re-
gions with a radius of 300 meters each were
defined across different urban topologies in
Pamplona (see Fig. 1). These regions served
as representative samples for comparing the re-
sults obtained from the methodology.

To establish a baseline for the tree position-
ing project, the PyCrown library (Zörner et al.
2018), a Python package for identifying tree
top positions in a canopy height model (CHM)
and delineating individual tree crowns, was uti-
lized with a range of parameters. The goal was
to find the parameter combination that mini-
mized false positives while maintaining high
F1 scores and accuracy. The results of these
various parameter settings were analysed, and
the best-performing configurations were high-

8 Tree inventory of Pamplona

lighted. Although a specific combination of a
smooth filter (SF) and window size (WS) of
2 pixels did not always yield the highest F1
score or accuracy, it provided a low false pos-
itive rate, which was prioritized in this study.
Consequently, these parameters were selected
as the project’s baseline.

The detection of urban trees was car-
ried out using a multi-step process that be-
gan with LiDAR point cloud data and em-
ployed the PyCrown library for detecting tree
crowns and tops. The methodology was de-
signed to maximize the number of geolocated
tree points, even at the expense of higher false
positive rates. Subsequent filtering techniques
were applied to reduce false positives and im-
prove overall results compared to the optimal
PyCrown configuration.

The process involved several key steps:

1. Initially, the LiDAR point cloud data was
processed to generate height models, such
as the Vegetation Height Model (MDAV),
Terrain Height Model (TDM), and Surface
Height Model (MDS) (see Ginzler 2021,
for application of similar models in another
regional context). The PyCrown algorithm
was then applied to these models to detect
and extract tree tops and crowns in a GIS
format (Tomlinson et al. 1976).

2. The detection of tree crowns and tops re-
lied on the identification of zonal maxima
and the analysis of point cloud slopes. The
algorithm’s configuration was set to max-
imise the number of detected points, ac-
cepting the likelihood of more false posi-
tives.

3. A cadastral layer, obtained from local
council records, was used to filter out
points located within building boundaries,
as these were unlikely to represent trees.

4. Trees detected within 4 meters of each
other were grouped together using a spec-
ified radius value, allowing the algorithm
to identify and cluster neighbouring trees
based on their proximity.

5. To further reduce false positives, an ob-
ject detection model, which automatically
identifies trees in RGB images by draw-
ing bounding boxes around them, was ap-

https://geoportal.navarra.es/es/idena
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plied to the aerial orthograph images. Any
points from the previous steps that did not
fall within the bounding boxes drawn by
the model were filtered out.

6. The Normalized Difference Vegetation
Index (NDVI, see Huang et al. 2020, for
a recent review) was applied to the LiDAR
data to identify and retain only those points
associated with vegetation. This technique
improved accuracy by filtering out non-
vegetated surfaces, such as buildings and
roads.

7. The DBSCAN (Density-Based Spatial
Clustering of Applications with Noise,
Ester et al. 1996) algorithm was used to
further cluster and analyse the spatial data,
particularly for identifying and grouping
tree points within the LiDAR data.

To ensure the accuracy of the tree detec-
tion methodology, the urban tree inventory of
Pamplona was used as a reference. Given that
the inventory’s spatial accuracy was approxi-
mate, ground truth points were manually re-
vised, adding missing trees and removing non-
tree points. The validation process involved
matching the closest control tree to each de-
tected tree, checking for reciprocity, and cal-
culating the distance between points. If the
distance was within 3.5 meters, the detection
was classified as a true positive; otherwise, it
was considered a false positive. Ground truth
points without associated detections were clas-
sified as false negatives. This thorough valida-
tion process ensured a reliable assessment of
the tree detection methodology.

2.2. Image database for urban tree
species classification

Hereafter we present a methodology for the
automatic generation of a dataset containing
RGB images of various tree species captured
at ground level.

These images are retrieved from GSV
based on geo-located points, and several algo-
rithms are applied to categorise the images by
tree species. The resulting dataset is designed
for training a classification model capable of

automatically identifying tree species in oper-
ational settings.

Our primary goal is to create a dataset
of 20,000 images, focusing on species such
as Acer negundo, Catalpa bignonioides, Celtis
australis, Gleditsia triacanthos, Ligustrum
japonicum, Melia azedarach, Platanus x hy-
brida, Robinia pseudoacacia, Sophora japon-
ica, Ulmus pumila. This approach will serve
as a framework for analysing additional tree
species. Images are automatically downloaded
by directing the GSV camera towards trees
based on their geo-locations, with each im-
age labelled according to the known species at
that location. Two different classifiers and an
anomaly detection algorithm were trained on
these images, and the classification into spe-
cific species of images was only considered to
be corrected when all the developed models
gave consistent results.

The dataset was created using the pub-
licly available Madrid’s urban tree inventory9,
which provides geo-located points that specify
the location, species, and height of the trees.
The information was stored in a GeoPackage
(”gpkg”) file. Using the coordinates from this
inventory, we extracted RGB images of trees
via the Google Street View service. This ser-
vice allows for the retrieval of the closest GSV
image to a given point and supports camera ad-
justments through parameters such as coordi-
nates (latitude and longitude), heading (hori-
zontal orientation), pitch (vertical orientation),
and field of view. For our methodology, we set
the pitch to 0° and the field of view to 110°.

Due to potential inaccuracies in geoloca-
tion and the possibility of multiple trees ap-
pearing in a single image (e.g Fig. 2), we
employed the Faster R-CNN object detec-
tion model (Ren et al. 2015), with Inception-
ResNet v2 (Szegedy et al. 2016) as the back-
bone, pre-trained on the Open Images Dataset
(Krasin et al. 2016). This model was imple-
mented using TensorFlow (Abadi et al. 2015)
to detect and isolate trees within the images.
The most centred tree in each image was se-
lected as corresponding to the database point.
Detailed views were then obtained by adjusting

9 Open data portal of Madrid

https://datos.madrid.es/portal/site/egob/
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Fig. 2. Multiple trees detected in the same field
of view of an image downloaded from Google
Stree View.

the zoom parameter. The resulting images were
stored in folders categorised by tree species.

Given potential misclassification due to ge-
olocation errors, we performed a manual cura-
tion step, resulting in a dataset of 16,854 im-
ages. To address species with limited data, ad-
ditional images were sourced from the GBIF
dataset10. These images were filtered using
a ResNet101 model (He et al. 2016) to ex-
tract features, followed by dimensionality re-
duction with UMAP (McInnes et al. 2018) and
clustering with HDBSCAN (Campello et al.
2013), adding 5,749 high-quality images to
the dataset. The final manually curated dataset
consisted of 22,603 images distributed across
several tree species.

The curated dataset was split into train-
ing and validation sets, with 80% allocated for
training and 20% for validation. A ResNet152
image classifier (He et al. 2016), pre-trained on
ImageNet (Deng et al. 2009), was fine-tuned to
automatically identify tree species.

Additionally, a separate dataset of 44,751
images, automatically acquired was used to
train the second classifier. This dataset was
split into a 95% training set and a 5% val-

10 GBIF website

idation set. A VGG16 classifier (Simonyan
2014) was trained to differentiate between
each species, complemented by ROC curve
analysis to optimise classification thresholds.
Moreover, a one-class Support Vector Machine
(OCSVM, Schölkopf et al. 1999) was trained
on this dataset to score images based on their
likelihood of belonging to a species class.

The final procedure to classify the images
is given by the combination of the results
of ResNet152, VGG16, and OCSVM classi-
fiers. Images were considered valid only if they
were classified as the same species by both
ResNet152 and VGG16 and were not flagged
as anomalies by OCSVM. This approach was
applied to the automatically retrieved dataset
of 27988 images, resulting in a final clean
dataset discussed in Sect. 3.2. Precision was
used as the primary performance metric, given
the ability to repeatedly access Google Street
View data for additional images. Due to the
scarcity of certain species, the GBIF image re-
trieval method was employed to ensure a mini-
mum of 2,000 images per species.

To estimate the performance of the dataset
generation process, a sample of 200 images per
tree species was randomly selected and man-
ually validated. This sampling approach was
chosen due to time constraints, under the as-
sumption that it represents the overall quality
of the dataset.

3. Results and discussion

In this section, we will go through the results
of the two different tasks that are part of the
ArbörIA project. The results demonstrate the
effectiveness of the methods presented above
in achieving significant improvements, high-
lighting the potential of sophisticated algo-
rithms in urban tree geolocation and identifi-
cation.

3.1. Urban trees geo-positioning

The implemented object detection filter ef-
fectively reduced the overall number of false
positives across all eight zones by 7.24%,
surpassing the initial target of a 5% reduc-
tion. Although this improvement is less than

https://www.gbif.org/
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Improvement in %
Zone TP FN FP Precision Recall F1 Accuracy
Zone 1 2.65 -0.45 -61.11 13.7 0.65 6.12 7.83
Zone 2 21.65 -28.98 44.44 -3.82 12.46 4.79 5.23
Zone 3 6.08 -7.69 -43.64 14.47 3.25 8.79 9.39
Zone 4 23.99 -37.79 22.76 0.22 13.46 2.57 2.06
Zone 5 15.23 -19.81 15.42 -0.05 8.52 3.54 3.45
Zone 6 22.06 -35.23 21.30 0.13 13.54 6.91 8.02
Zone 7 14.90 -28.41 -24.53 5.1 9.56 7.79 10.48
Zone 8 -0.67 1.86 -7.04 0.87 -0.52 0.05 0.07
Mean 13.43 -21.88 7.24 3.83 7.62 5.07 5.82

Table 1. True Positive (TP), False Negative (FN), False Positive (FP), Precision, Recall, F1 and
Accuracy percentage improvements reported for each zone and averaged over them.

the 14% reduction observed at the mid-term
stage, the integration of new algorithms has
significantly enhanced the performance met-
rics, including Precision, Recall, F1 score, and
Accuracy.

The results (see Tab. 1) demonstrate a
marked improvement in detection accuracy.
For instance, in Zone 1, Precision increased
from 75.19% to 88.89%, and Accuracy from
56.05% to 63.88%. Similar enhancements
were observed across other zones, with an
average increase of 3.83% in Precision and
5.82% in Accuracy. This improvement is at-
tributed to the strategic application of advanced
techniques, including NDVI calculation and
DBSCAN clustering. The NDVI filter, sen-
sitive to vegetation, effectively distinguished
vegetation points, while the DBSCAN method
identified and preserved dense clusters of true
positives, reducing noise and false positives.

In conclusion, the geolocation methodol-
ogy used for identifying trees in urban environ-
ments proved to be highly effective, achieving
a 7.24% reduction in false positives and signif-
icantly enhancing overall precision. The com-
bination of mid-term and final-term techniques
has not only met but exceeded the objectives,
underscoring the efficacy of advanced filtering
and clustering methods in improving the ac-
curacy and reliability of urban tree detection.
Nevertheless, new techniques and better data
are being sought to compensate for the weak-
nesses of the current method, while preserving
or even improving its strengths, and also to re-

duce the differences we find between the dif-
ferent areas under consideration.

3.2. Image database for urban tree
species classification

The application of our approach to a final
dataset of 27988 images yielded a finally au-
tomatically labelled and curated dataset of
26,519 images, surpassing the target of 20,000
images across ten tree species, with each
species represented by at least 2,000 images
(see Tab. 2). The precision of our method var-
ied depending on the species, likely due to
morphological and anatomical differences. For
example, Platanus x hybrida and Celtis aus-
tralis had the highest precision rates at 97.5%,
as their distinctive features were more easily
identifiable. Conversely, Gleditsia triacanthos
proved challenging to distinguish, possibly due
to anatomical similarities with other species or
lower-quality training data, resulting in a lower
precision of 89.5%. Despite these variations,
the overall precision was satisfactory across all
species, with the number of correctly labelled
images compensating for the few misclassified
samples. This outcome highlights the robust-
ness of our methodology in generating a reli-
able dataset, which is essential for training ac-
curate tree species classifiers.

Our results demonstrate that while the
method’s effectiveness is influenced by
species-specific characteristics and data qual-
ity, the precision achieved is adequate for
practical applications. The approach shows
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Specie Images Precision (%)
Acer negundo 2088 95.5
Catalpa bignoides 2234 90.5
Celtis australis 2066 97.5
Gleditsia triacanthos 3188 89.5
Liigustrum japonicum 2191 96.0
Melia azedarach 3826 95.5
Platanus x hybrida 4083 97.5
Robinia pseudoacacia 2016 95.0
Sophora japonica 2115 95.5
Ulmus pumila 2712 95.5

Table 2. Resulting number of images after applying our ensemble model to filter mislabeled
images and precision of the model.

significant potential for automated tree species
identification and can be further improved by
incorporating more advanced computer vision
techniques and larger training datasets. This
would enhance the reliability and accuracy of
tree species classification, particularly when
dealing with a broader range of species.

4. Conclusions

This study presented two pivotal activities
within the ArbörIA project, each contributing
to the project’s advancement in distinct yet
complementary ways. This project is an ex-
tension of the work presented by Rodrı́guez-
Puerta et al. (2022). Different methods for de-
tecting and geolocating trees in urban envi-
ronments were developed, using several open
data sources to generate automatically curated
datasets of urban public green space. The pro-
posed approach would provide municipalities
with much more accurate data on the amount
of vegetation in a city and the benefits it pro-
vides.

Firstly, the geolocation methodology for
identifying trees in urban settings demon-
strated a notable 7.24% reduction in false pos-
itives, surpassing the initial goal of 5%. This
achievement was facilitated by the integration
of LiDAR point cloud data, advanced filter-
ing techniques, and NDVI calculations, which
collectively enhanced the precision of the tree
geolocation algorithm. The results consistently
outperformed the baseline, emphasising the
role of advanced algorithms in optimising ge-

olocation accuracy and reducing false posi-
tives.

Secondly, an automated methodology for
generating an RGB image dataset of urban
tree species was developed using Google Street
View, Madrid’s urban tree inventory, and GBIF
data. By leveraging deep learning, cluster-
ing, and dimensionality reduction algorithms,
we successfully curated a dataset of the ten
most common tree species with satisfactory
precision, despite challenges related to misla-
beling and visually similar species. This ap-
proach demonstrates the potential for future
applications in automatic species identifica-
tion, though improvements in training data and
algorithmic sophistication are needed for more
reliable classification across diverse species.

Future efforts will focus on expanding
both the image database and refining the ge-
olocation methodology. Enhancements in the
dataset, through external databases and data
augmentation, alongside further optimisation
of tree detection algorithms, are expected to
improve species classification and geolocation
accuracy, pushing the project’s impact on ur-
ban tree management forward.
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