
Mem. S.A.It. Vol. 95, 115
© SAIt 2024 Memorie della

AI-FLARES: Artificial Intelligence for the
Analysis of Solar Flares Data

M. Piana1,2, F. Benvenuto1, A. M. Massone1, C. Campi1, S. Guastavino1, F. Marchetti3,

P. Massa4, E. Perracchione5, and A. Volpara1

1 MIDA, Dipartimento di Matematica, Università di Genova, Genova, Italy
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Abstract. AI-FLARES (Artificial Intelligence for the Analysis of Solar Flares Data) is
a research project funded by the Agenzia Spaziale Italiana and by the Istituto Nazionale
di Astrofisica within the framework of the “Attività di Studio per la Comunità Scientifica
Nazionale Sole, Sistema Solare ed Esopianeti” program. The topic addressed by this project
was the development and use of computational methods for the analysis of remote sensing
space data associated to solar flare emission. This paper overviews the main results obtained
by the project, with specific focus on solar flare forecasting, reconstruction of morpholo-
gies of the flaring sources, and interpretation of acceleration mechanisms triggered by solar
flares.
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1. Introduction

Solar flares are the most explosive and ener-
getic events that characterize the active Sun
(Tandberg-Hanssen & Emslie 1988). They
may extend for more than 10,000 kilometers,
release more than 1032 ergs in less than 100
seconds, accelerate billion of tons of materi-
als to more than one kilometer per hour, and
generate electromagnetic radiation at all wave-
lengths. From a physical viewpoint, this source
of radiation is characterized by very low re-
sistance and very high inductance, so that the

rising phase of a flare should last for an (im-
possibly) long time, which is in contrast with
respect to empirical observations. This flare
paradox, together with the fact that very lit-
tle is known about the acceleration and energy
release mechanisms within the flaring region,
are the reasons why solar flares are still a hot
topic in both experimental and theoretical so-
lar plasma physics. Further, from a technolog-
ical viewpoint, flares are the trigger of space
weather (Moldwin 2022), i.e., the physical and
phenomenological state of natural space envi-
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ronments, which may notably impact the tech-
nological assets at earth.

Two general investigation issues concern-
ing solar flares are:

1. Are the information contained in the mag-
netic fields constrained within solar active
regions (ARs) and measured by means of
magnetograms accurate enough to allow a
reliable flare forecasting process?

2. Which physical mechanisms determine the
acceleration of the electrons in coronal
plasma, thus triggering the process that
leads to the emission of high energy radi-
ation via bremsstrahlung with the ions of
the ambient plasma?

The “Artificial Intelligence for the anal-
ysis of solar FLARES data (AI-FLARES)”
project, funded in 2019 by the Agenzia
Spaziale Italiana and the Istituto Nazionale
di Astrofisica under the “Attività di Studio
per la comunità scientifica nazionale Sole,
Sistema Solare ed Esopianeti” framework, rec-
ognized that these issues can be accomplished
by means of two different approaches. From
the one hand, magnetohydrodynamics (MHD)
equations can be numerically reduced in order
to simulate the flaring mechanisms. However,
this approach is significantly hampered by the
complexity of these partial differential equa-
tions and by the limited accuracy of the nu-
merical approximation of their solutions. On
the other hand, data-driven approaches can ex-
ploit the notable amount of solar, heliophysics,
and space weather missions that are currently
operating and that can provide an unprece-
dented amount of multi-modal measurements
concerning essentially all possible manifesta-
tions of the active Sun. Given this available
wealth of data, AI-FLARES focused on the
formulation and implementation of computa-
tional methods for their interpretation, with ap-
plications to the forecasting and modelling of
solar flares. Specifically, AI-FLARES devel-
oped computational methods for the prediction
of the flaring emission and the identification
of flare precursors, the reconstruction of flare
morphologies for intense eruptive events, and
the comprehension of the energy release and
acceleration mechanisms for both thermal and

non-thermal electrons. The project’s objectives
were to

– Reconstruct the saturated EUV signal in
the core region of images of flaring storms
recorded by the Atmospheric Imaging
Assembly on-board the Solar Dynamics
Observatory (SDO/AIA) (Lemen et al.
2012).

– Provide an imaging-spectroscopy picture
of the acceleration mechanisms at the base
of solar high-energy emissions by exploit-
ing visibilities recorded by both the Reuven
Ramaty High Energy Solar Spectroscopy
Imager (RHESSI) (Hurford et al. 2003)
and the Spectrometer/Telescope Imaging
X-rays (STIX) on-board Solar Orbiter
(Krucker et al. 2020).

– Design flare forecasting processes and
identify the most significant precursors of
intense flares by applying machine learn-
ing and deep learning algorithms to the
Helioseismic and Magnetic Imager on-
board SDO (SDO/HMI) magnetograms
(Scherrer et al. 2012).

The methodological inspiration of AI-
FLARES relied on an extended interpreta-
tion of artificial intelligence, including su-
pervised machine and deep learning, im-
age processing, inverse problems and inverse
diffraction theory. From a technological view-
point, the outcome of this research effort has
been a set of computational pipelines for
the interpretation of flare-related physics that
can be reached at https://github.com/
theMIDAgroup/AI-FLARES.

The plan of the paper is as follows. Section
2 describes AI-FLARES results concerned
with flare forecasting. Section 3 and Section 4
focus on image processing and reconstruction
at EUV and hard X-ray wavelengths, respec-
tively. Our conclusions are offered in Section
5.

2. AI-FLARES and solar flare
forecasting from magnetograms

In the last decade a notable amount of sci-
entific literature has been illustrating the re-
sults of the application of data-driven AI-based

https://github.com/theMIDAgroup/AI-FLARES
https://github.com/theMIDAgroup/AI-FLARES
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approaches to flare forecasting (Camporeale
et al. 2018; Huang et al. 2018; Florios et al.
2018; Leka et al. 2019; Georgoulis et al. 2021;
Ribeiro & Gradvohl 2021; Nishizuka et al.
2021; Sinha et al. 2022). Most of these studies
describes the action of either machine learn-
ing tools that process features extracted from
magnetograms, or deep neural networks that
directly take as input full disk images of solar
active regions (ARs). On the one hand, a pos-
sible objective of feature-based machine learn-
ing is to identify which AR descriptors mostly
impact the forecasting process. An example of
this approach is given in Figure 1, which points
out, for example, that descriptors like the Ising
energy may play a significant role for the pre-
diction of intense X-class flares. On the other
hand, deep learning aims at improving the pre-
dictive power hidden within the space data by
means of black-box approaches that take as in-
put images or videos of AR magnetograms and
provide as output a binary classification based
on features that are automatically computed by
the neural networks. Figure 2 below shows an
example of deep learning architecture for flare
forecasting.

AI-FLARES addressed the first issue by
means of sparsity-enhancing regularization
methods applied to the SDO/HMI archive in
specific but large time ranges (Benvenuto et al.
2018; Florios et al. 2018; Massone et al. 2018;
Piana et al. 2018; Campi et al. 2019; Benvenuto
et al. 2020; Cicogna et al. 2021). In a typical
pipeline of analysis, the HMI magnetograms
have been grouped into four subsets belong-
ing to the four issuing times 00:00, 06:00,
12:00, and 18:00 UT. For each AR we used the
171 features extracted by means of the algo-
rithms implemented within the FLARECAST
Horizon 2020 project (Georgoulis et al. 2021).
For each subset, i.e., for each issuing time, we
generated the training, validation, and test sets
and, for each sample in the training set, the an-
notation was performed providing label ”1” to
an event occurred within 24 hours from the is-
suing time. By applying AI-FLARES machine
learning algorithms to these data we were able
to prove that (see Figure 1):

– Very few AR descriptors are really effec-
tive in the forecasting process and these de-
scriptors are very robust, independently of
the regularization method used and of other
experimental aspects like the issuing times
considered in the training set (Campi et al.
2019).

– The Ising energy seems to systematically
play a notable predictive role, specifically
in the case of the forecasting of partic-
ularly intense flaring storms (Benvenuto
et al. 2020).

– The computation of innovative topolog-
ical descriptors can represent a way to
improve the skill scores associated to
feature-based machine learning algorithms
(Cicogna et al. 2021).

The second AI-FLARES perspective on
flare forecasting was the development of deep
learning networks able to provide a notable
prediction improvement in the difficult game of
space weather prediction. In these approaches,
convolutional neural networks automatically
compute the image features (whose physical
meanings are often rather obscure), and then
the extracted features are fed into a stan-
dard neural network to perform the classi-
fication. In this context, the main result of
AI-FLARES (see Figure 2) has been the im-
plementation of a pipeline that, for the first
time, utilizes videos of HMI frames as in-
put data and that, again for the first time, ac-
counts for an appropriate balancing of dif-
ferent data sample types in the training, val-
idation, and test phases of the neural net-
work (Guastavino et al. 2022). We imple-
mented the AI-FLARES Long-term Recurrent
Convolutional Network (LRCN) and validated
it against the Near Realtime Space Weather
HMI Archive Patch (SHARP) data products
associated with the line-of-sight components
in the time range between 2012 September 14
and 2017 September 30. More specifically, we
used 24-h-long videos made of 40 SHARP im-
ages of an AR, with 36 minutes cadence, and
used data augmentation to increase the cardi-
nality. These videos have been categorized as
C- (flares of class at least C), M- (flares of class
at least M), and X-class flares and also accord-
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Fig. 1. Feature-based machine learning for flare forecasting. Top left panel: very few descriptors (x-
axis) are sufficient to achieve high values of the True Skill Statistic (TSS) score (y-axis) with two machine
learning methods (hybrid LASSO, HLA and Random Forest, RF). Bottom panel: feature-ranking applied
to machine learning outcomes show that the Ising energy significantly increases its rank when the AR
producing the flaring event is included in the training set. Top right panel: the TSS notably increases when
the topological feature introduced in Cicogna et al. (2021) is added as first descriptor (red solid line), with
respect to the case when the feature is not used in the training set (blue dashed line).

ing to four different null-events classes (class
N01 corresponds to ARs that have never gen-
erated a flare; class NO2 to ARs that have orig-
inated a flare after more than 48 after the sam-
pling time; class NO3 to ARs that had origi-
nated a flare in the 48 hours before the sam-
pling time; class NO4 to ARs that had origi-
nated a flare prior to the 48 hours before the
sampling time).

We repeated this set generation process ten
times in order to create ten random realizations
of these three sets. The algorithm for set gener-
ation was inspired to two strategic principles:
proportionality, i.e., use of the same rates of
samples for each category, where these rates
have been computed on the base of the rates
characterizing the previous solar cycle.; and
parsimony, i.e., use of as few ARs as possi-
ble, so that samples belonging to the same AR
fall into the same set. These two constraints
and, specifically, the proportionality one, are
in accordance with machine learning theory

(Vapnik 2013), which requires that training,
validation, and test sets are generated with
samples drawn by means of the same probabil-
ity distribution. Differently from this, chrono-
logical splitting would introduce a bias in set
generation due to solar periodicity.

The deep learning network has been trained
twice in order to generate two different models,
i.e. labelling as ’yes’ the ARs that generated a
flare of class C or higher and a flare of class
M or higher, separately. As a consequence, in
this approach a binary classification scheme is
applied twice, using two models trained in two
different ways. As shown in Figure 2, the true
positive rates provided by the deep network are
significantly high (in particular, both M and X
classes are more distinguishable from ARs as-
sociated with NO-class), and in all cases the
standard deviations are nicely small.

As a final comment, we point out that AI-
FLARES provided contributions also to the
methodological field related to machine and
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deep learning research. In particular, during
this project two theoretical ideas have been
conceived and formulated. The first one is
about the use of probabilistic score-oriented
loss functions in the training phase for neural
networks (Marchetti et al. 2022); the second
one is about the use of value-weighted skill
scores for the performance assessment of both
machine and deep learning (Guastavino et al.
2022, 2023). These two methodological tools
have been utilized in most networks designed
for the flare forecasting approaches developed
within AI-FLARES.

3. AI-FLARES and EUV image
de-saturation

EUV measurements recorded in correspon-
dence with intense solar flares are almost sys-
tematically affected by saturation. After the
launch of SDO/AIA, the desaturation of EUV
images has become a big data issue, since
AIA has been providing more the 105 frames
per year since February 2010 (Schwartz et al.
2014; Torre et al. 2015; Schwartz et al. 2015).

AI-FLARES contribution to image pro-
cessing at the solar EUV regime is repre-
sented by the formulation and implementa-
tion of the Sparsity-Enhancing DESAT (SE-
DESAT) method, a novel computational ap-
proach for the analysis of SDO/AIA saturated
images able to recover the signal in the pri-
mary saturation region in a rapid fashion with-
out using any other information but the one
contained in the image itself (Guastavino et al.
2019). SE-DESAT is a modification of a previ-
ous algorithm developed in our group, named
DESAT (Schwartz et al. 2015). As for DESAT,
also in SE-DESAT the input data are repre-
sented by the diffraction fringes and there-
fore this is again an inverse diffraction algo-
rithm. However, unlike for DESAT, this new
approach realizes segmentation between the
primary saturation region and blooming, back-
ground estimation and desaturation in the pri-
mary saturation region at the same time, with-
out the need of any a priori information on the
image background. Further, an adaptive ver-
sion of SE-DESAT (adaptive SE-DESAT) in-
troduced weights depending on the shape of

the saturated region (Guastavino & Benvenuto
2021). An example of how SE-DESAT per-
forms is described in Figure 3, in the case of
EUV images recorded by AIA on September
25 2011, in the 193 Å bandwidth, at time point
03:33:31 UT.

We point out that the availability of this
desaturation pipeline has currently two impor-
tant consequences. First, scientists working in
the STIX community are used to integrate the
hard X-ray information contained in the STIX
data with the EUV information contained in
the AIA data, and to this aim de-saturated AIA
images are needed (Massa et al. 2022). Second,
AI-FLARES people are currently involved in a
NASA project for nowcasting solar flares start-
ing from AIA information (Massa & Emslie
2022). Once again, image desaturation will be
a crucial pre-processing step for the realization
of a prediction approach that will apply ma-
chine learning to de-saturated EUV maps.

4. AI-FLARES and hard X-ray imaging
spectroscopy

AI-FLARES results concerned with hard X-
ray imaging spectroscopy (Piana et al. 2022)
have been of three kinds. We formulated the
mathematical model for the image formation
process of STIX visibilities and contributed
to the calibration process for all thirty STIX
collimators devoted to imaging (Massa et al.
2019; Krucker et al. 2020; Massa et al. 2023).
We then developed several image reconstruc-
tion methods able to represent in the image
space the information contained in the hard X-
ray visibilities recorded by either RHESSI or
STIX. Specifically, we have formulated, imple-
mented and validated (see Figure 4):

– A maximum entropy method, in which the
solution is constrained to have positive en-
tries and total flux equal to an a priori esti-
mate (Massa et al. 2020).

– An interpolation/extrapolation method
based on feature augmentation and
on the use of Variably Scaled Kernels
(Perracchione et al. 2021a,b) that al-
lows the implementation of an auto-
mated version of CLEAN deconvolution
(Perracchione et al. 2023).
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Fig. 2. Deep learing for flare forecasting. Left panel: the AI-FLARES neural network is made
of a Long Short-Term Memory (LSTM) network fed by the outcomes of several Convolutional
Neural Networks (CNNs). Right panels: the rates of true positives and true negatives are signifi-
cantly high thanks to the use of video-based deep learning.

Fig. 3. Desaturation of EUV maps. Left panel: an intense solar flare saturates an extended
region of an image recorded by SDO/AIA. Right panel: AI-FLARES desaturation algorithm is
able to restore the signal in the core of the flaring source.

– A parametric imaging method that works
for both a partial information on the visi-
bility set, i.e., when just the visibility am-
plitudes are provided by the instrument
(Massa et al. 2021) and when visibilities
are recorded by fully calibrated collimators

(Volpara et al. 2022) (the algorithm relies
on Particle Swarm Optimization).

Finally, and probably more importantly, as part
of the RHESSI legacy (Piana et al. 2007; Prato
et al. 2009), we formulated and implemented
a regularization method that is able to recon-
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struct maps whose pixel content is proportional
to the average flux of the electrons acceler-
ated along the magnetic field lines from the
corona down to the chromosphere. The con-
cept of this method relies on the construction
of visibility spectra for each spatial frequency
point sampled by STIX; these spectra are de-
convolved to subtract the bremsstrahlung ef-
fect by means of a regularization method that
allows the reconstruction of electron visiblity
spectra smoothed along the spectral direction;
finally, the electron visibility spectra are re-
ordered to generate the electron maps. The
nicest aspect of this methodological approach
(see Figure 5) is that these electron maps are
constrained to vary in a smooth way along the
energy direction and that can be projected back
to the photon domain to produce photon maps
that are in turn regularized across energy. This
approach may represent an important step to
a full interpretation of STIX data within the
framework of imaging spectroscopy, and may
provide a crucial tool for the understanding of
electron acceleration mechanisms during solar
flares (Volpara et al. 2023).

5. Conclusions

This paper has reviewed the main results
obtained within the framework of the AI-
FLARES project. These results involve the
whole workflow concerning the interpretation
of solar flare data, starting from the prediction
of flaring events using magnetograms, through
the restoration of morphological aspects of
the flaring sources in saturated high-resolution
EUV maps, to the realization of an innovative
imaging spectroscopy approach in the case of
hard X-ray visibilities.

The legacy of AI-FLARES in the current
activity of our research group is two-fold. On
the one hand, we are developing neural net-
works for forecasting other space weather phe-
nomena, our main focus currently being on
the characterization of coronal mass ejections
(CMEs, and on the prediction of geo-effective
events from solar wind data. In this context, it
is possible to design neural networks for the
prediction of CMEs travel time from the so-
lar corona to L1 that encode physical informa-

tion in the loss function utilized for the train-
ing (Guastavino et al. 2023); and to apply ma-
chine learning for determining the most pre-
dictive features of geo-effectiveness (Telloni
et al. 2023; Guastavino et al. 2024). On the
other hand, we are studying how regularized
electron maps can be used to obtain quantita-
tive information about the effectiveness of the
electron acceleration mechanisms triggered by
magnetic reconnection high in the solar corona
(Volpara et al. 2024).

As a final remark, we think that one of
the open issues concerning the use of AI ap-
proaches for the interpretation of solar flares
data is concerned with their possible potential-
ity for real-time flare forecasting. Although op-
erational AI-based tools are not yet utilized in
this context, there are, however, at least two as-
pects that should be considered to address this
objective. First, AI-FLARES showed the need
of training neural networks by means well-
balanced archives in order to obtain reliable
performances, and this must be done by ac-
counting for the periodicity of solar activity.
Second, the fact that just few image descrip-
tors significantly impact the prediction per-
formances implies that feature-based machine
learning can be continuously re-trained with-
out any notable computational burden, which
makes this approach feasible in operational set-
tings.
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