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Clustering of galaxy spectra: an unsupervised
approach with Fisher-EM
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Abstract. We present a novel approach to galaxy spectra classification using Fisher-EM, a
latent subspace clustering and Gaussian mixture model based algorithm. This approach was
applied to a sample of 10 000 simulated spectra, highlighting its capacity to discriminate
physical properties based on spectroscopic data, as well as its robustness towards noise. A
sample of 700 000 spectra of close-by galaxies observed by the Sloan Digital Sky Survey
(SDSS) was successfully classified, and a detailed physical interpretation of the classes is
in preparation. An extension to higher redshifts is currently in progress, using a sample of
70 000 galaxies of redshift 0.4 < z < 1.2 from the VIMOS Public Extragalactic Survey
(VIPERS). An evolution tree-like structure was constructed, showcasing evolution path-
ways of the classes throughout cosmic time from z = 1.2 to z = 0.4.

Key words. Methods: data analysis – Methods: statistical – Galaxies: statistics – Galaxies:
general – Techniques: spectroscopic

1. Introduction

The JWST is now in operation, and the world
of astrophysics is about to enter a new era.
Observations are made at greater redshifts, and
now is a particularly exciting time to study
galaxies and their evolution.

The motivation behind this work is to high-
light the diversity and evolution of the physical
aspects of galaxies that can be inferred from
their spectroscopic properties (e.g. metallicity,
history of star formation, active nuclei, etc.).
In particular, working with a broad range of
redshifts makes it possible to evaluate the evo-
lution of these characteristics through the his-
tory of the universe, which is ultimately the

goal of this work. Using an unsupervised clus-
tering algorithm, an automatic classification of
large samples of galaxy spectra is made possi-
ble (Fraix-Burnet et al. 2015). Galaxies shar-
ing similar properties are gathered in classes,
and the physical interpretation can thus be re-
stricted to the classes’ mean spectrum instead
of the whole sample, hence greatly reducing
the computational cost.

The work presented in this contribution
consists of an overview of several applica-
tions of the unsupervised classification algo-
rithm Fisher-EM to three different datasets of
optical spectra. First, on a simulated sample
(Dubois et al. 2022), then on observations from
the Sloan Digital Sky Survey (SDSS) (Fraix-
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Fig. 1. Heatmaps showing the distribution of the mass fraction of stars originating from a sudden
burst of star formation (left panel), and the metallicity (right panel) in the classification of a
simulated sample of galaxy spectra. The parameter values are represented on the y-axis, and the
class index on the x-axis. The within-class densities of the parameter values are illustrated in the
form of a heatmap, where a dark square equates to a density of 1, and white of 0.

Burnet et al. 2021), and finally, on observa-
tions from the VIMOS Public Extragalactic
Redshift Survey (VIPERS). Another contribu-
tion closely related to this work was made
by M. Siudek. It showcases Fisher-EM ap-
plications to photometric data from VIPERS
(Siudek et al. 2017, 2018).

The unsupervised algorithm is briefly ex-
plained in Sect. 2. An overview of the results
that have been obtained is presented in Sect. 3
and Sect. 4.

2. Method

The algorithm Fisher-EM was used for this
project. It combines both an unsupervised ap-
proach based on a Gaussian Mixture Model
(GMM), and a dimension reduction process
through projection of the data onto a dis-
criminative latent subspace. The description of
Fisher-EM is kept concise here, but a complete
and thorough explanation can be found in the
original article (Bouveyron & Brunet 2012).

A GMM models the data’s probability den-
sity function (PDF) f (K, θ) with the weighted
sum of K multivariate Gaussian PDFsΦ(µi,Σi)
(Eq. 1). The algorithm aims at minimizing
a loss-function by tweaking the number of
classes K, the shapes of the GMM’s multivari-
ate Gaussian PDFs Φ(µi,Σi) and their weight
πi.

f (K, θ) =
K∑

i=1

πiΦ(µi,Σi) (1)

An important aspect of this method to
grasp is that the GMM is applied on a la-
tent subspace rather than the observed space. It
serves two purposes. It reduces the dimension
down to K − 1; dimension reduction is neces-
sary to avoid the curse of dimensionality that
high-dimensional data suffer from. And in ad-
dition, the subspace is chosen to facilitate the
convergence of the GMM. In fact, the projec-
tion matrix is tweaked iteration after iteration
at the same time as the GMM parameters such
that the Fisher criterion is maximized. This cri-
terion is the ratio of the between-class variance
over the within-class variance. As such, maxi-
mizing it amounts to maximizing the between-
class variance (i.e. having the clusters well sep-
arated) and minimizing the within-class vari-
ance (i.e. having the clusters as compact as
possible). This way, the subspace is optimized
to highlight the discriminative features in the
data and to make the clusters stand out.

3. Physical relevance and robustness
of the classification

The physics of galaxies is encoded in their
spectra; the presence of emission lines can for
example be linked to episodes of star formation
and activity in the galactic nuclei; the shape
of the continuum gives an indication of the
age of the stars; lots of different aspects in a
spectrum can be linked back to many physical
characteristics. However, a spectrum also con-
tains a lot of non-physical particularities that
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Fig. 2. This tree-like structure highlights evolution pathways of galaxy classes over cosmic time
up to a redshift of z = 1.2. Each vertical step in the tree corresponds to a certain epoch, linearly
sampled from 4 Gyr after the Big Bang (bottom of the tree) to 9 Gyr (top of the tree).

can influence the classification. For example,
the amount of noise is not necessarily identical
in every observation; there can be differences
in calibration, sampling, and other instrumen-
tal aspects. And because all these components
are mixed together in a spectrum, there was a
need to test the ability of Fisher-EM to produce
classifications that are physically relevant, i.e.
that segregate galaxies based on physical char-
acteristics.

Results on optical spectra simulated with
CIGALE (Boquien et al. 2019) show that it
is in fact the case (Dubois et al. 2022). Some
physical characteristics are very well separated
among the classes. The presence and the mass
fraction of a burst of star formation, for exam-
ple, is very well segregated (Fig. 1).

4. A window to galaxy evolution

The method was successfully applied to a sam-
ple of 700 000 spectra of close-by galaxies
from the SDSS (Fraix-Burnet et al. 2021). This
is the first automatic classification of a large
sample of galaxy spectra performed without
any prior feature selection. The resulting clas-
sification contains 86 classes, each showing
their own specificities, and an in-depth descrip-
tion of the classes is currently in preparation.

An extension of the SDSS classification
is currently in progress, and it shall include
galaxies from the VIPERS PDR-2 up to a red-
shift of z = 1.2. The sample was divided
into subsamples by bins of epoch, and each
subsample was individually classified with
Fisher-EM. Links between classes of succes-

sive epochs were constructed with k-NN to
make it possible to follow the evolution of a
given class over the cosmic time from 4 Gyr to
9 Gyr after the Big Bang.

When put together, the links create a tree-
like structure, where branches can be fol-
lowed to track evolution pathways (Fig. 2).
Preliminary analysis shows a dozen of sig-
nificant branches with clear spectral specifici-
ties, mostly divided into two main categories:
star forming and passive. Morphological, spec-
tral, and photometric measurements are being
cross-matched with the classes, and will give
precise insights for the interpretation of the
evolution branches.
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