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Abstract. We develop an algorithm using a convolutional neural network (CNN) to identify
low H i column density Lyα absorption systems (log NHI/cm−2 < 17) in the Lyα forest, and
predict their physical properties, such as their H i column density, redshift, and Doppler
width. The CNN models provides state-of-the-art predictions to 15 observed Keck/HIRES
spectra of quasars at redshift z ∼ 2.5 − 2.9, in < 3 minutes per spectrum. We demonstrate
that CNNs can be used to analyse the enormous number of data available with current and
future facilities, and thereby greatly increase the statistics of Lyα absorbers.
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1. Introduction

The Lyman-α (Lyα) forest are the absorption
of photons emitted by a background quasar at
the redshifted Lyα transition (rest-frame wave-
length=1215.67Å). The Lyα absorbers with
low H i column density dominate the Lyα
forest and can be used to probe the distri-
bution and evolution of the baryonic mat-
ter, structure formation, and constrain cos-
mological parameters (see reviews: Meiksin
2009). Conventionally, these absorption lines
are manually fit with Voigt profiles (e.g. Rudie
et al. 2012, hereafter R12) which requires
many human hours. To overcome big data
problems from future surveys and facilities,
this work (Cheng et al. 2022), for the first time,
applies a convolutional neural network (CNN)

to efficiently identify Lyα forest systems (NHI
< 1017 cm−2) and extract their physical proper-
ties, including the redshift, Doppler width, and
H i column density.

2. Methodology

Our training data are simulated quasar spec-
tra generated using packages in the pyigm soft-
ware. The generated spectra represent a typ-
ical quasar at redshift z = 3 and are con-
volved with an instrumental vFWHM = 7 km s−1.
The velocity per pixel of these spectra is
set to 2.5 km s−1 pixel−1. These choices re-
flects the typical properties of high resolution
quasar spectra in current observatory archives.
Additional noises (S/N ≃ 10) are added into
the training spectra to stablise predictions for



122 Cheng, Cooke & Rudie: Identifying Lyα systems with a CNN

64

64

32

256

128

LyαID

zloc

logNHI

logbHI

179

Input

1

174
87 81 40 37

18

512

512 512
512 512

512

6

2
7

Conv 1

Conv 2

Conv 3

Pool 1

Pool 2
Pool 32

4
2

9216

Flatten

Dense 1

Dense 2

Fig. 1. The CNN architecture contains three 1-dimensional convolutional layers with pooling
layers following each, one dense layer to connect each component, and four dense layers for four
target outputs. The values of relevant hyperparameters are listed in Table 1.

spectra with different noise levels. We employ
multi-task learning by training with and pre-
dicting four outputs (labels), also see Fig. 1:

– LyαID: it is set to a value of 1 if a Lyα ab-
sorber exists in this pixel, and 0 if not;

– logNHI: H i column density (in units of
cm−2) of the corresponding Lyα absorber
on a logarithmic scale;

– zloc: the relative location of the centre of
an absorption feature (in units of pixels).
A pixel centred on an absorption feature is
set to 0, and negative and positive values to
pixels at the left and right, respectively;

– logbHI: Doppler width of the correspond-
ing Lyα absorber on a logarithmic scale
(km s−1).

We apply similar training strategies to that
adopted by Parks et al. (2018) to ‘scan’ through
a spectrum with a fixed-size window (ws) and
a 1 pixel step size. Fig. 1 shows our CNN ar-
chitecture.

3. Results and Conclusion

We validate our CNN model by 15 quasar
Keck/HIRES spectra observed and reduced by
R12. Two metrics are considered in this work:
(1) the root mean square error (RMSE) and (2)
mean absolute error (MAE), to assess the ‘ac-
curacy’ of the CNN predictions. The RMSE is
strongly impacted by the outliers due to the
square of the residual. Hence, we will focus
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Fig. 2. Comparisons between the CNN and R12 values of log NHI/cm−2 (left) and bHI (right). The black
solid line shows a one-to-one relation. Dark blue datapoints show the median values of CNN and R12 within
different bins of R12. The x-axis error bar is defined by the median value of the estimation errors of the
datapoints provided in R12, while the y-axis error bar presents the MAE of each bin.

Table 1. Hyperparameters selected using Bayesian
Optimisation (GPyOpt)

Hyperparameters Value
Data Input window size (ws) 179

central pixels (cnpix) 1
CNN L2 0.0
Architecture dropout 0.1

conv filter 1 512
conv filter 2 512
conv filter 3 512
conv kernel 1 6
conv kernel 2 7
conv kernel 3 4
dense 1 64
dense 2 ID 32
dense 2 N 64
dense 2 z 256
dense 2 b 128

on the MAE, which is more resilient to out-
liers than the RMSE, in this paper. Around
78 per cent of the ML-classified Lyα sys-
tems are matched with R12, and the MAE of
∆ log NHI/cm−2, ∆zHI, and ∆bHI are 0.14 dex,
2.7×10−5, and 4.2 km s−1, respectively. The
comparison of column density and Doppler

width between our CNN and R12 are shown
in Fig. 2. This result validates the possibil-
ity to apply a CNN model with our approach
to analyse the enormous quantity of data, in
particular characterising low H i column den-
sity Lyα absorption systems (log NHI/cm−2 <
17), in the current archives (e.g. VLT/UVES,
Keck/HIRES) and that will be obtained with
new facilities (e.g. WEAVE, 4MOST, etc).
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