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Learning the Radio 21cm Signal – From Dawn
till Dusk, from Tomography to Sources
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Abstract. Measurements of the 21cm signal are a key example of the data-driven era in
astrophysics we are entering. Tomography of 21cm intensity maps targeted by SKA-LOW
teaches about source properties, state of the intergalactic medium (IGM) and cosmology
during the epoch of reionisation (EoR), while imaging with SKA-MID traces late-time
structure formation via neutral hydrogen within sources. We showcase deep networks tai-
lored for tomographic 21cm light-cones to firstly infer cosmological and astrophysical pa-
rameters, and to secondly detect and characterise HI sources, all in 3D. We highlight how
comparably simple 3D network architectures are the best-performing models.
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1. Introduction

The first stars and galaxies illuminate the
Universe at Cosmic Dawn, leading at first to
an absorption signal in the forbidden spin-
flip transition of neutral hydrogen, the so-
called 21cm signal. With further heating the
21cm signal emits above the Cosmic mi-
crowave background (CMB). With more and
more radiation pervading larger volumes, the
before neutral hydrogen becomes ionised again
during Reionisation. This signal of fluctua-
tions in 21cm brightness is targeted by SKA-
LOW, see 2.1 direct inference from 3D in-
tensity maps. At later times, the 21cm signal
and radio continuum trace neutral hydrogen
in sources, allowing for large-scale mappings
of the Universe e.g. with SKA-MID, see 2.2
21cm source detection in 3D. The Square

Kilometre Array (SKA, https://www.skao.int/)
will achieve this 3D tomography via 2D spatial
maps combined with finely gridded frequency
information. This produces up to TB/s of data
for a highly non-Gaussian signal, thus making
deep learning (DL) a suitable candidate to re-
duce and analyse. We highlight here our find-
ings regarding optimal deep learning models to
analyse 21cm tomography.

2. Learning from the 3D 21cm signal

2.1. Direct inference from 3D maps

The 3D-21cmPIE-Net Neutsch et al. (2022)
performs direkt likelihood-free inference of as-
trophysical and cosmological parameters from
3D mappings during CD and EoR, as expected
for SKA-LOW and at different noise levels, see
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fig. 1. The network was trained on a database
of ∼5000 lightcones of 140x140x2350 vox
and 1.4 Mpc resolution. Different options were
tested to treat 3D data optimally:

– Slicing for spatial images → 2D CNN
(convolutional neural network), residual
network with skip connections,

– Time series of co-eval images → LSTM
(long-short-term memory) network,

– Full 3D convolution→ 3D CNN.

The best-performing architecture, the 3D-
21cmPIE-Net, can:

– Directly constrain cosmology and EoR
astrophysics from 3D data,

– with low scatter and bias,
– transfer learn simulations and mocks, and
– is robust towards increased noise levels.

Fig. 1. 3D-21cm Parameter InfErence Net (3D-
21cmPIE-Net) – A public architecture tailored for
3D-21cm lightcones.Neutsch et al. (2022)

2.2. 21cm source detection in 3D

A 3D data cube of 1TB as expected for
the SKA-MID, together with a 1GB
training cube with ground truth infor-
mation, was presented for the second
SKA science data challenge (SDC2,
https://sdc2.astronomers.skatelescope.org).
Goal was the detection and characterisation of
>100.000 HI sources. Key findings, see also
fig. 2, were:

– Direct 3D approaches perform best for 3D
segmentation of sources,

– where 3D U-Nets offer robust 3D recon-
structions,

Fig. 2. Our source detection and characterisation
pipeline for the SKA Science Data Challenge 2.
Hartley et al. (2022)

– allowing for high precision estimate of
flux & HI size,

– with properties unbiased almost indepen-
dently of source brightness.

3. Conclusions

Why (3D) intensity mapping? As compared to
the measurement of single galaxies, intensity
mapping (IM) measures the sum of all radia-
tion reaching us over larger sky areas. These
intensity fluctuations tell us about properties
of both galaxies and the gaseous medium
between. As there is no need to resolve
single objects, and as we pick up all radiation
components (also diffuse radiation), the signal
is enhanced and we detect fluctuations from
higher redshifts. At the same time, we are not
biased towards brightest sources. In addition,
3D information is derived via frequency-
dependence for full tomography. Due to this
variety and wealth of information encoded, as
well as the signal being highly non-Gaussian,
IM is prone to be explored with deep learning.
We highlight two successful DL applica-
tions to 21cm 3D mappings, direct inference
of astrophysical and cosmological model
parameters, and detection of HI sources.
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