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Reconstructing blended galaxies
with Machine Learning
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Abstract. Galaxy blending is a confusion effect created by the projection of photons from
galaxies on the same line of sight, to the 2D plane (Dawson & Schneider 2014). The up-
coming deep extragalactic surveys like LSST and Euclid expect to see a blending fraction
of up to 50% in the densest regions (Reiman & Göhre 2019). For standard aperture photom-
etry and for more complex techniques such as PSF-fitting and template-fitting algorithms,
deblending, the process of reconstructing the individual light profiles from blended sources,
becomes crucial.
The current standard deblending algorithms like SExtractor (Bertin & Arnouts 1996) are
based on threshold methods that simply assign each pixel to a single object, often failing to
correctly take into account the real properties of the blended galaxies. With the advent of
Machine Learning (ML) and Computer Vision in Astronomy we want to explore an unbi-
ased and more accurate method of reconstructing individual light profiles using generative
models.
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1. Deblending with ML

ML techniques have been previously em-
ployed to provide methods for deblending that
use generative adversarial networks (GANs)
(Reiman & Göhre 2019) which show promis-
ing results but GANs don’t have properly de-
fined metrics for evaluation and can be com-
putationally heavy to train. We use a flavor
of auto-encoders (AEs) called variational auto-
encoders (VAEs) for deblending in the Euclid
framework. AEs (Rumelhart & Williams 1986)
were first introduced as neural networks that
are trained to reconstruct their inputs. They are
generative models that consists of two parts: an
encoder and a decoder. The encoder part of the

model learns to reduce the high-dimensional
input to an encoded representation and the de-
coder part learns how to reconstruct the in-
put from the lower dimensional representation
which is called the latent space or the bottle-
neck layer. VAEs (Kingma & Welling 2015),
are a flavor of AEs that use probablistic dis-
tribution for data generation, usually a normal
distribution, such that instead of mapping the
high-dimensional input to a fixed encoded rep-
resentation, it is mapped to a distribution, giv-
ing us more control over how we want to model
our latent distribution (Higgins 2016).

Two distinct VAE networks are needed to
deblend galaxies: One which learns how to
reconstruct galaxy light profiles in isolation,
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Fig. 1: The first VAE works on isolated galaxies and learns to reconstruct them. Using the decoder of the
first VAE and fixing its weights the second VAE works on blended galaxies and learns to map central galaxy
to z(µ, σ) s.t. reconstruction ∼ original isolated.

and another one which uses the trained de-
coder (with fixed weights) of the first net-
work to actually deblend overlapping galaxies
by reconstructing their individual light profiles
(Arcelin 2020). The second network’s encoder,
that works on blended galaxy images, learns to
map the high-dimensional input to a point in
the latent space as if it was isolated over the
training period. The latent space point can then
be reconstructed to a full galaxy stamp using
the first network’s decoder which is already
trained to reconstruct galaxy stamps in isola-
tion as shown in Fig. 1

2. Data Generation

To test the results of using this ML tech-
nique for deblending we simulate stamps of
galaxy images for the Euclid survey in the
VIS band. The galaxy images are built starting
from a mock input catalogue created using the
Empirical Galaxy Generator (EGG) (Schreiber
2017), a code that can generate mock galaxy
catalogs with realistic positions, morphologies

and fluxes. The catalog feeds the image simu-
lation toolkit GalSim (Rowe 2014) to generate
analytical double-Sersic profiles. We also use
more realistic simulations of galaxy images for
the Euclid VIS that have been created as part of
the Euclid morphology challenge (Bretonnière
2022; Merlin et al. 2022).

For the second VAE we created artifi-
cially blended galaxy images by superimpos-
ing one galaxy in an annulus around another
and adding the pixel values. We only use two
galaxies per blended galaxy image to study the
algorithm for a simple test case. For both sim-
ulations, analytic and realistic, gaussian noise
is added to the noiseless simulated galaxy
stamps. The gaussian noise corresponds to the
limiting magnitude of the Euclid VIS band and
is mlim = 27.1. For both simulations a total of
150,000 images are used which are split into
two parts for training the first VAE on isolated
galaxies and the second VAE on blended galax-
ies.
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Fig. 2: Example of deblending by the VAE for the analytic dataset

Fig. 3: Example of deblending by the VAE for the realistic dataset

3. Results

Lets look at some examples of deblending for
the two different datasets described in Sec. 2.
Fig. 2 and Fig. 3 show an example of deblend-
ing for the analytic dataset and the realistic
dataset respectively. The input to the second
VAE as shown in Fig. 1 is seen in the first
panel. The second panel shows the true cen-
tral galaxy in a blended pair. The third panel
shows the prediction of the VAE and it can
been seen that for both the datasets the VAE is
able to reproduce the shape, size and orienta-
tion of the galaxy. The last panel shows the %
error between the original central galaxy and
the prediction by the VAE. The realistic galax-
ies have more complex morphology and hence
it’s harder for the algorithm to deblend.

The results for flux estimates from the ana-
lytic simulations are shown in Fig. 4 and from
the realistic simulations are shown in Fig. 5.
For the isolated galaxies as seen in Fig. 4a and
Fig. 5a on the X-axis is the true magnitude and
on the Y-axis is the normalised residuals of the
estimated flux (by summing the pixels of the
image predicted by the VAE). For the blended

galaxies as seen in Fig. 4b and Fig. 5b on
the X-axis is the true magnitude of the central
galaxy in the blended pair and on the Y-axis is
the normalised residuals of the estimated flux
of the central galaxy (that is deblended by the
VAE and estimated by summing the pixels of
the predicted image).

In the case of realistic simulations for
bright central galaxies the deblended flux is un-
derestimated by ∼10% and this can be due to
an imbalance in the dataset which reflects the
true distribution of galaxies, i.e. there are more
fainter galaxies than brighter ones which can
be improved by artificially homogenizing the
dataset. On the other hand standard methods
like SExtractor tend to underestimate flux by
∼12% because of their conservative apertures
for photometry (Boucaud et al. 2019).

4. Conclusions

The main focus of our work is to obtain accu-
rate flux and morphology estimates for blended
objects and clean light profiles to be used as
priors for template fitting codes like T-PHOT
(Merlin 2015). The summary of the analysis
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Table 1: Summary of standard deviation of normalised residuals

Dataset Isolated Blended
Analytic 8.97% 9.93%
Realistic 13.9% 18.8%

(a) For isolated galaxies; On the X-axis is the
true magnitude, Y-axis is the normalised residu-
als of prediction.

(b) For blended galaxies; On the X-axis is the
true magnitude of the central galaxy, Y-axis is
the normalised residuals of prediction of the
central galaxy.

Fig. 4: Results with the analytic simulations. The
running mean and median are shown in black and
yellow lines and the mean and median of the test
dataset is marked with black and yellow dashed
lines. The points above the 0 error line (red) are
cases where flux is underestimated.

can be seen in Tab. 1 that shows that the de-
blending algorithm using VAEs is able to re-
cover the flux of the central galaxy in blended
pair with ∼10% accuracy for the analytic sim-

(a) For isolated galaxies; On the X-axis is the
true magnitude, Y-axis is the normalised residu-
als of prediction.

(b) For blended galaxies; On the X-axis is the
true magnitude of the central galaxy, Y-axis is
the normalised residuals of prediction of the
central galaxy.

Fig. 5: Results with the realistic simulations. The
running mean and median are shown in black and
yellow lines and the mean and median of the test
dataset is marked with black and yellow dashed
lines. The points above the 0 error line (red) are
cases where flux is underestimated.

ulations and with ∼19% accuracy for the re-
alistic simulations. In the future, we want to
optimize the VAE’s use for deblending by im-
plementing hyper-parameter tuning the model
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architecture (for eg. the optimizing the size
of the latent space) and additionally including
data augmentation techniques (such as rotat-
ing, flipping the isolated galaxies and create
multiple realizations of blending with the same
set of galaxies) for better performances.
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