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Abstract. This paper reviews the Stochastic Recurrent Neural Network (SRNN) as applied
to the light curves of Active Galactic Nuclei by Sheng et al. (2022). Astronomical data have
inherent limitations arising from telescope capabilities, cadence strategies, inevitable ob-
serving weather conditions, and current understanding of celestial objects. When applying
machine learning methods, it is vital to understand the effects of data limitations on our
analysis and ability to make inferences. We take Sheng et al. (2022) as a case study, and il-
lustrate the problems and limitations encountered in implementing the SRNN for simulating
AGN variability as seen by the Rubin Observatory.

Key words. quasars: general – methods: statistical – surveys – software: data analysis

1. Introduction

Machine learning has become increasingly
popular in many branches of astronomical re-
search. In particular, these methods are being
applied to the large data sets from wide-field
sky surveys. Despite many successes, it is vi-
tal to understand that any machine learning im-
plementation comes with difficulties and limi-
tations, and may not always be appropriate for
every problem (Kremer et al. 2017).

Various model architectures, such as the
many flavours of neural networks, extract fea-
tures through multiple layers. This is partic-
ularly suited to imaging data, though with-
out care these models may extract noise as
well as or instead of real astronomical fea-

tures. However, they are often treated as intel-
ligent “black boxes” whose complex nonlinear
computations prevent researchers from directly
understanding the feature extraction process,
especially for non-image data. Additionally,
methods used for data pre-processing and ar-
gumentation can greatly effect the training pro-
cess and model accuracy (Maharana et al.
2022).

Limitations also inevitably arise from the
data themselves. For example, there is often
a trade off between purity and completeness
(Smethurst et al. 2021); simulated data may
not be representative of reality; and the quality
of the data could be influenced by observing
conditions, signal-to-noise ratio (SNR), etc. It
is becoming more crucial to understand these
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effects with increasingly big data from large
sky surveys, such as Vera Rubin Observatory
Legacy Survey of Space and Time (LSST),
where the utility of the data for a particular in-
vestigation are also influenced by the chosen
filter and cadence strategies.

In this paper, we summarize and review
the paper Sheng et al. (2022), discussing the
advantages and limitations of applying ma-
chine learning techniques for astronomical re-
search purposes using a novel neural network
architecture – a stochastic recurrent neural
network (SRNN) – as a case study. To our
knowledge, this was the first application of
the SRNN in astronomical research. In that
project, the motivation was to estimate the suit-
ability of different cadence strategies in the
upcoming LSST survey for studying the vari-
ability in active galactic nuclei (AGN) time
series. The SRNN was applied model simu-
lated AGN light curves as observed with var-
ious proposed cadence strategies for the LSST
Wide-Fast-Deep (WFD) survey (LSST Science
Collaboration et al. 2009).

2. Data sets

To evaluate LSST cadences over a 10-year
observation period, AGN light curves are
simulated using Continuous Auto-Regressive
Moving Average (CARMA) models.

The CARMA model is a statistical descrip-
tion of stochastic and stationary processes in
time series. Although it is not a physical model,
it has been widely employed as a description of
long-term AGN variability. CARMA models
are notated as CARMA(p, q) where p gives the
order of the Autoregressive (AR) process and
q gives the description of the Moving Average
(MA) process. The first order CARMA model
– CARMA(1,0) or the Damped Random Walk
(DRW) – has been applied to many quasar vari-
ability studies (e.g. Kelly et al. 2014; Feigelson
et al. 2018; Moreno et al. 2019). It can be
expressed by Equation 1, where α is the C-
AR coefficient and β is the coefficient of the
random perturbations. In the case of AGN, x
corresponds to the flux or magnitude. W(t) is
a Wiener process, and dW(t) means a white

noise process with µ = 0 and σ2 = 1 (Kelly
et al. 2014).

d1x + α1x(t) = β0dW(t) (1)

Its Structure Function (SF), the average dif-
ference in amplitude between points separated
by a given time interval ∆t, is expressed as

SF(∆t) = SF∞(1 − e−|∆t|/τ)1/2,SF∞ =
√

2σ. (2)

There are two key parameters: the character-
istic timescale τ, and the long-term variability
amplitude SF∞.

The second-order CARMA(2,1) or
Damped Harmonic Oscillators (DHO) is also
applied to simulate AGN with quasi-periodic
features, such as blazars. For the detailed
formula, see Sheng et al. (2022, Table A1).

This project used the DRW parameters
derived from 7384 quasars from the Sloan
Digital Sky Survey Stripe 82 field (MacLeod
et al. 2010), and extended them to both DRW
and DHO cases. The EzTao Python Package
(Yu & Richards 2022) was applied to simu-
late CARMA light curves with daily observa-
tions in the u, g, r, i, z, y bands. Then, five pro-
posed LSST cadence strategies1 were selected
to downsample the light curves to simulate re-
alistic observations. On average, LSST will re-
observe an object in some band every ∼ 3 days
and in the same band every ≳ 7 days. These
could then be modelled using an SRNN to at-
tempt to recover the input CARMA parameters
from the incomplete data.

2.1. Representativeness of the
simulated data

It is worth noting that there are differences be-
tween CARMA models and the true AGN light
curves, which may cause the former to be less
representative of the latter:

1. CARMA models are stationary time-series
processes, but AGN light curves seem to be
non-stationary (Tachibana et al. 2020).

1 The five chosen cadence strategies are baseline,
u long, filterdist, cadence drive and rolling. Details
see Sheng et al. (2022, section 3.2)
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2. CARMA models are statistical without any
physical mechanism. Moreover, quasars
can have occasional large flares on top of
their DRW-like variability.

3. CARMA models do not consider the cor-
relations between bands, whereas quasars’
timescales and variability amplitude varies
with bands.

2.2. Limitations of LSST data

Most of the proposed WDF cadence strate-
gies distribute unbalanced observations among
the six bands, with a large allocation in the
r, i, z, Y bands and less in the u and g
bands. Furthermore, the observations for each
band are not simultaneous. Those factors might
bring difficulties for multi-band time-series
modelling, with gaps in observations leading to
poor sensitivity in recovering short-timescale
variability (Sheng et al. 2022).

Also problematic for the case of AGN
light curve analysis with the DRW model,
Kozłowski (2017) suggest that reliably mea-
suring the variability timescale τ requires a
temporal baseline of at least 8 − 10τ. With a
finite duration of 10 years in the LSST survey,
this introduces significant biases in recovering
timescales for the large fraction of AGN with
τ ≳ 1 year, regardless of the machine learning
employed (Sheng et al. 2022).

3. Stochastic Recurrent Neural
Networks high-level overview

Inspired from Bayer & Osendorfer (2015),
Fraccaro et al. (2016) propose the idea of
adding stochasticity in a latent state repre-
sentation on the classical Recurrent Neural
Networks (RNN). They stack a state space
model (SSM) on deterministic RNNs to
achieve a stochastic and sequential genera-
tive model (see Figure 1a) and a structured
variational inference network (see Figure 1b),
which produce the output sequences and pro-
vide the model’s posterior distributions, re-
spectively. The loss function includes the neg-
ative log-likelihood of the predictions and tar-
gets and Kullback-Leibler divergence (DKL)

(Kullback & Leibler 1951) between the prior
and posterior distributions.

This algorithm is expected to be compat-
ible with CARMA models as CARMA can
be represented as state space models. The
SRNN is applied to the simulated LSST-
cadence AGN light curves, and outputs the pre-
dicted/interpolated light curves on a daily ca-
dence over 10 years. Figure 2 is an example.

3.1. Limitations of SRNN

The results from Sheng et al. (2022, Section
5) show the SRNN modelling performance for
both uniformly-sampled and LSST-like light
curves. Given the similar amounts of observa-
tion numbers, SRNN can model light curves
better with uniform cadences than with LSST
cadences. SRNN can recover the long-term
variability S F∞ well, but the timescale τ is al-
ways underestimated when τ is long, which is
restricted by the number of input observations
and the gaps between groups of observations.

Compared with Variational Auto-encoders,
(such as Sánchez-Sáez et al. 2021), the SRNN
also lacks explanations of latent features. The
correlations between close and distant time
steps are not human-interpretable.

SRNN is designed to estimate and com-
pare 10-year length light curves with potential
cadence strategies, however, for the upcoming
LSST data, SRNN modelling could be difficult
as the light curves are much shorter.

3.2. Problems of ‘filling the gaps’

Here we discuss how SRNN modelling fills in
the gaps between distant observations. Shown
from Sheng et al. (2022, Figures 8-11), SRNN
can reconstruct the input observations when
cadence gaps are reasonably short compared
with their timescales, but for large gaps,
SRNN’s general performance is weak. The fol-
lowing factors all affect the SRNN light curve
reconstruction:

1. Number of observations.
2. Cadence strategies and different bands.
3. Level/timescale of variability: high

SF∞/short τ.
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Fig. 1. (a) Generative model (left) (Sheng et al. 2022, Figure 7(a)). Observed light curves are fed
into the Input layer, then a number of hidden layers (RNN layers). The output of the last hidden
layer has two paths: one copy is fed to the SSM layer, realized by multiple prior Gaussian
distributions at each time step, and then the sampling layer will randomly sample a value from
each Gaussian distribution; the other copy will be combined with the sampled values and fed to
the output layer. The output layer produces predicted daily light curves. (b) Inference network
(right) (Sheng et al. 2022, Figure 7(b)). It is only used for training process. The output of the
last hidden layer is combined with the target light curves at each timestep and fed into a reversed
RNN layer, producing the approximate posterior Gaussian distributions.

Fig. 2. An example of SRNN modelling. The input light curves are the observed light curves
with time dilation considered, presented with grey points. Black points with error bars show the
light curve with ‘baseline’ cadence. The reconstructed light curves (by SRNN) are shown with
red points. The lower left show the Mean Square Errors of the SRNN modelling and recovered
DRW parameters by Gaussian Process Regression.

4. Quasi-Periodicity.
5. Assumption of stationarity.

In summary, for the LSST cadences shown
in Sheng et al. (2022, Figures 9-11), long gaps
exist between observations, and for the reasons
above, the SRNN model struggles to impute
the behaviour during these gaps, especially for
the non-periodic DRW and DHO-overdamped
cases. This will turn out to be an important lim-
itation when attempting to infer CARMA pa-
rameters from these light curves.

4. Better data or better models?

Recently, there has been a discussion in ma-
chine learning research: Do better data or bet-
ter models contribute more to high accuracy?
The answer is that for the same model, the ac-
curacy rate increases with the amount of train-
ing data, but its ‘marginal utility’ decreases.
The capability of models are restricted by the
data volume though a better model is able to
improve the accuracy to a certain level.

In astronomy, the situation can be more
complicated: Data quality is not always suffi-
cient due to weather conditions, satellite inter-
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ference and other constraints. Accordingly, it is
worth discussing whether we should use only
”good” (quality trimmed data) or real data for
training, validation, and testing.

While effective data preprocessing meth-
ods can greatly improve model results, there
are some tricky tasks that developers need to
be aware of. For example, how to replace miss-
ing values with values that have no signifi-
cant physical meaning? How to scale, normal-
ize and feed the input data? How to deal with
poor-quality data that retains useful informa-
tion? How to understand the model reflection?
Compared with designing model architectures,
these issues are more prominent and deserve
attention.

5. Conclusions

In this paper, we discuss the unavoidable prob-
lems of real and simulated astronomical data
for machine learning applications as well as the
limitations of applying SRNN for astronomical
time series.

However, the existing difficulties in this
project are not uncommon. Researchers are ex-
pected to conduct more investigations into the
model interpretation and data sets while devel-
oping machine learning algorithms and apply-
ing them to specific astronomical tasks.

References

Bayer, J. & Osendorfer, C. 2015, Learning
Stochastic Recurrent Networks

Feigelson, E. D., Babu, G. J., & Caceres, G. A.
2018, Frontiers in Physics, 6, 80

Fraccaro, M., Sønderby, S. K., Paquet, U., &
Winther, O. 2016, in Proceedings of the

30th International Conference on Neural
Information Processing Systems, NIPS’16
(Red Hook, NY, USA: Curran Associates
Inc.), 2207–2215

Kelly, B. C., Becker, A. C., Sobolewska, M.,
Siemiginowska, A., & Uttley, P. 2014, ApJ,
788, 33

Kozłowski, S. 2017, A&A, 597, A128
Kremer, J., Stensbo-Smidt, K., Gieseke, F.,

Pedersen, K. S., & Igel, C. 2017, IEEE
Intelligent Systems, 32, 16

Kullback, S. & Leibler, R. A. 1951, The Annals
of Mathematical Statistics, 22, 79

LSST Science Collaboration, Abell, P. A.,
Allison, J., et al. 2009, arXiv e-prints,
arXiv:0912.0201

MacLeod, C. L., Ivezic, Z., Kochanek, C. S.,
et al. 2010, The Astrophysical Journal, 721,
1014–1033

Maharana, K., Mondal, S., & Nemade, B.
2022, Global Transitions Proceedings, 3,
91, international Conference on Intelligent
Engineering Approach(ICIEA-2022)

Moreno, J., Vogeley, M. S., Richards, G. T.,
& Yu, W. 2019, Publications of the
Astronomical Society of the Pacific, 131,
063001
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