
Mem. S.A.It. Vol. 94, 102
© SAIt 2023 Memorie della

Performant feature extraction for photometric
time series

A. Lavrukhina1 and K. Malanchev2,3

1 Lomonosov Moscow State University, Faculty of Space Research, Russia
2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Russia
3 University of Illinois at Urbana-Champaign, Department of Astronomy, USA

e-mail: lavrukhina.ad@gmail.com

Received: 26-10-2022; Accepted: 24-02-2023

Abstract. Astronomy is entering the era of large surveys of the variable sky such as Zwicky
Transient Facility (ZTF) and the forthcoming Legacy Survey of Space and Time (LSST)
which are intended to produce up to a million alerts per night. Such an amount of pho-
tometric data requires efficient light-curve pre-processing algorithms for the purposes of
subsequent data quality cuts, classification, and characterization analysis. In this work, we
present the new library ”light-curve” for Python and Rust, which is intended for feature
extraction from light curves of variable astronomical sources. The library is suitable for
machine learning classification problems: it provides a fast implementation of feature ex-
tractors, which outperforms other public available codes, and consists of dozens features
describing shape, magnitude distribution, and periodic properties of light curves. It includes
not only features which had been shown to provide a high performance in classification
tasks, but also new features we developed to improve classification quality of selected types
of objects. The ”light-curve” library is currently used by the ANTARES, AMPEL, and Fink
broker systems for analyzing the ZTF alert stream, and has been selected for use with the
LSST.
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1. Introduction

Modern astronomical surveys contain a large
amount of data about billions of astronomi-
cal sources. For example, the Zwicky Transient
Facility (ZTF) (Bellm et al. 2019) obtains
about 1 million alerts per night, which to-
tal volume is over 70 GB (Patterson et al.
2019). For this reason, there is an urgent
need for productive and convenient in use
methods of data processing. In this work, we
present a new Rust/Python package for fea-
ture extraction from light curves of astronom-

ical sources named ”light-curve” (Malanchev
2021) and compare its performance with an-
other tool – ”feets” library (Cabral et al.
2018), which is written entirely in Python and
based on ”Numpy” (van der Walt et al. 2011),
”SciPy” (Virtanen et al. 2020) and ”statsmod-
els” (Seabold & Perktold 2010).

2. light-curve Python package

The ”light-curve” project aims to bring high-
performance processing of irregularly sampled
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Fig. 1. Benchmark boxplots for the features which are implemented in all discussed packages: ”feets”,
”Rust” implementation of ”light-curve” package, and its Python sub-package. The x-axis is the time in sec-
onds of feature extraction from the light curve consisting of 1,000 data points. ”feets” library performance
is labeled as ”feets”, Python version of ”light-curve” as ”lc py” and the Rust one as ”rust”. The median
value, the maximum, the minimum, the first and the third quartiles were counted.

time-series data in Rust and Python. Currently,
it consists of several Rust packages including
”light-curve-feature” crate for feature extrac-
tion, which was developed as a part of SNAD
anomaly-detection pipelines (Malanchev
2021; Aleo et al. 2022; Pruzhinskaya et al.
2022). While this package has proven itself
as a fast and thread-parallelizable solution,
we wrapped it into ”light-curve” Python
package. However, this package consists
of two parts: the wrapper sub-package and
a pure Python sub-package implemented
with ”Numpy” and ”SciPy”. The wrapper
sub-package offers high-performance Rust
implementation of features with memory-safe
Python interoperability, while the second
sub-package is utilized for the development
of new experimental features. The availability
of two separate implementations of the same
feature extractors enables us to validate the
correctness of both approaches and measure

the performance boost provided by the Rust
sub-package.

3. Benchmark

For the first benchmark, we used the sub-
set of features, which are implemented in
both ”light-curve” and ”feets” packages.
Each feature was extracted from a randomly
generated light curve consisting of 1,000
observations. The benchmark results are
shown in Fig. 1. See the feature descriptions
in Malanchev (2021) or https://docs.rs/
light-curve-feature/0.5.2/light_
curve_feature/features/index.html.

The second benchmark, shown in Fig. 2,
examines the performance of several feature
extractors, including both pure Python and
Rust implementations, as the number of obser-
vations in a light curve increases. A linear re-
lationship between the number of observations

https://docs.rs/light-curve-feature/0.5.2/light_curve_feature/features/index.html
https://docs.rs/light-curve-feature/0.5.2/light_curve_feature/features/index.html
https://docs.rs/light-curve-feature/0.5.2/light_curve_feature/features/index.html
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Fig. 2. Benchmark results of several features for both the pure-Python and Rust implementations
of the ”light-curve” package, as a function of the number of observations in a light curve. Both
the x-axis and y-axis are on a logarithmic scale.
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Fig. 3. Processing time per a single light curve for extraction of features subset presented in Fig. 1
versus the number of CPU cores used. The blue curve represents pure-Python implementation
and ”Joblib”’s multiprocessing strategy, the red curve represents the same strategy for the Rust
implementation, and the green curve represents the built-in multithreading implementation with
the Rust sub-package. The dataset consists of 10,000 light curves with 1,000 observations in
each.

and the performance of the feature extractors is observed, with a noticeable impact on per-
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formance when the number of observations ex-
ceeds 10,000. It is likely due to overhead such
as checking if the time array is sorted and en-
suring the magnitude array does not contain in-
appropriate values.

The last benchmark (see Fig. 3) is intended
to present the dependency of consumed time
from the used number of CPU cores for the
feature subset, presented in Fig. 1. The fea-
tures are extracted from a dataset of 10,000
light curves, each consisting of 1,000 obser-
vations. The multiprocessing strategies include
”Joblib”(Joblib Development Team 2020) for
the pure Python sub-package and Rust bind-
ings, as well as the built-in multithreading fa-
cility provided by the many() method in the
Rust bindings. In situations where many fea-
tures need to be extracted from a large dataset
of light curves, the Rust multithreading ap-
proach shows the best performance, although
performance is still impacted by overhead from
the multithreading, such as data serialization
and deserialization, and message passing be-
tween parent and child threads.

The hardware setup for the benchmarking
was a dual-CPU Intel Xeon Gold 5118 server.

4. Conclusions

The results of the test show that the Rust
version of ”light-curve” package outperforms
other implementations by a factor 1.5-50. This
superiority is due to Python’s dynamic typ-
ing and interpreted language nature. Such per-
formance enables the extraction of a large set
of ”cheap” features in just a few milliseconds
per CPU core for 1,000 observations. The li-
brary also features fast implementations of the
periodogram (Lomb 1976; Scargle 1982) and
parametric fits (Bazin et al. 2009; Villar et al.
2019). The time to extract the feature set, in-

cluding the periodogram, Bazin and Villar fits,
is ≈ 25 ms × CPU for six ugrizy LSST 3-
year light curves. It allows the processing of all
LSST alerts in real-time using a single compu-
tational node.
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