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Pitfalls of AI classification of rare objects

Galaxy Mergers
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Abstract. Galaxy mergers are hugely important in our current dark matter cosmology.
These powerful events cause the disruption of the merging galaxies, pushing the gas, stars
and dust of the galaxies resulting in changes to morphologies. This disruption can also
cause more extreme events inside the galaxies: periods of extreme star formation rates and
the rapid increase in active galactic nuclei activity. Hence, to better understand what goes
on in these rare events, we need to be able to identify statistically large samples.
In the last few years, the growth of artificial intelligence techniques has seen application
to identifying galaxy mergers. These techniques have shown to be highly accurate and
their application has grown beyond academic studies of “can we?” to deeper scientific use.
However, these classifications are not without their problems.
In this proceedings, we will explore how galaxy merger classification can be improved
by adding pre-extracted galaxy morphologies alongside the traditional imaging data. This
demonstrates that current neural networks are not extracting all the information from the
images they are given. It will also explore how the resulting samples of rare objects could
be highly contaminated. This has a knock on impact on the upcoming large scale surveys
like Euclid and Rubin-LSST.
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1. Introduction

Galaxy mergers underpin out current under-
standing of how galaxies grow and evolve. In
the current dark matter paradigm, dark matter
halos grow hierarchically. These halo mergers
result in the galaxies in their centres also merg-

ing. This results in a single, larger dark matter
halo containing a single, larger galaxy.

These interactions cause changes to the
galaxy. Tidal forces involved cause material to
move in the interacting galaxies. This results
in morphology changes, including the creat-
ing of tidal tails or bridges. The tidal forces
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can also move material to the centre, triggering
active galactic nuclei activity (e.g Keel et al.
1985; Silverman et al. 2011; Gao et al. 2020)
or shock the gas and trigger extreme star-
formation (e.g. Joseph & Wright 1985; Ellison
et al. 2013; Pearson et al. 2019).

Merger rates are not constant in the
Universe, with more mergers found in the
younger Universe. This is seen both in ob-
servations and in simulations, although there
are disagreements in how the merger rate
evolves (e.g. Kartaltepe et al. 2007; Conselice
et al. 2008; Lotz et al. 2008; Conselice et al.
2011; Bluck et al. 2012; Cotini et al. 2013;
Rodriguez-Gomez et al. 2015; Qu et al. 2017;
Pearson et al. 2019; O’Leary et al. 2021).
These disagreements may be a result of us-
ing a fixed merger timescale when a variable
timescale is more applicable (Snyder et al.
2017).

To better understand galaxy mergers, large
samples are required. Visual identification, of-
ten considered the most reliable method, is
slow and time consuming. Mergers can also be
identified with morphological parameters, such
as Gini or M20 or identifying galaxies close
on the sky and in redshift. With the huge vol-
umes of data expected from upcoming surveys,
such as Euclid or Rubin-LSST, machine learn-
ing has become an area of interest for merger
identification.

In this proceedings, we will explore how
deep learning can be used to identify galaxy
mergers in Hyper Suprime-Cam (HSC) Subaru
Strategic Program (SSP) and North Ecliptic
Pole (NEP) imaging, such as the images in
Fig. 1. It will look at how combining visual-
like classification with galaxy morphologies
can improve classification. It will also discuss
how excellently performing neural networks
can have highly contaminated samples of rare
objects. As galaxy mergers are a minor class
of galaxy in the universe, this misclassifica-
tion problem has implications for merger stud-
ies with these upcoming surveys.

2. Merger identification

We aimed to identify galaxy mergers from
HSC data in NEP. This was done using deep

Fig. 1. Example galaxies from HSC-NEP that will
be classified as mergers or non-mergers in this work.
Galaxies labelled ‘M’ were ultimately identified as
mergers in this work while the others were not.

learning trained on HSC-SSP images of merg-
ing and non-merging galaxies. These were
identified in the GAMA-KiDS Galaxy Zoo
project and the worst miss-classifications were
removed with an asymmetry-smoothness cut.
This provided 1683 merging systems at z <
0.15 and a further 1683 non-mergers were col-
lected.

We trained a convolutional neural network
(CNN) on the r-band HSC images. This net-
work achieved a loss of 0.473 and accuracy of
79.3% at validation. We further trained a fully
connected network (FCN) on the morpholo-
gies of the galaxies, extracted from the same
r-band images used to train the CNN. The FCN
achieved a loss of 0.301 and an accuracy of
88.8% at validation. Full details of the CNN
and FCN architectures can be found in Pearson
et al. (2022).

As the morphologies can be considered a
compression of the images, the better FCN re-
sults imply that the CNN cannot extract all the
information from the images. It is also possible
that the CNN is also finding information that is
lost in the compression to morphological pa-
rameters. Thus, we join the CNN and FCN to-
gether, as shown in Fig. 2 and explained in de-
tail in Pearson et al. (2022), and pass the con-
catenated CNN-FCN layer into a discriminator
(TN). The CNN and FCN were trained before
concatenation and the TN was trained without
continuing to train the CNN and FCN. This
combined network resulted in a loss of 0.260
and accuracy of 91.7% at validation, an im-
provement over the individual CNN and FCN.
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Fig. 2. Schematic of the combined FCN and CNN network. The CNN takes an r-band image as input while
the FCN takes the 17 morphological parameters. The concatenated layer of the CNN and FCN are passed
into a Top Network (TN) discriminator before a two-neurone binary classification is generated.

As can be seen from these result, the CNN
was unable to extract all the information from
the images. The FCN lost information in the
compression of the images to morphological
parameters, or could not fully exploit the mor-
phologies, or both. The combined CNN-FCN
allowed at least some of this lost information to
be recovered. At test, the CNN-FCN-TN net-
work achieved an accuracy of 88.4%.

3. Merger misclassification

As well as the network trained at z < 0.15, we
also trained a network for galaxies at 0.15 ≤
z < 0.30, using the z < 0.15 galaxies, edited to
appear as higher redshift galaxies. The statis-
tics for these networks is shown in Table 1.

We apply these networks to 34 264 galax-
ies in NEP and present the classifications in
Table 1 (lower). 10 195 (29.8%) of the galax-
ies were identified as mergers (merger candi-
dates). These were then visually checked, due
to the known imperfect nature of the networks.
Of the 10 195 merger candidates, 2109 (20.7%)
were identified as true mergers. This misclassi-
fication is worse at 0.15 ≤ z < 0.30 (1858 of
8718 or 21.3% were true mergers) than at z <
0.15 (251 of 1447 or 17.0% were true mergers).

Table 1. Performance statistics from the neural
networks derived using a class balanced data
set (upper) and galaxy classification (lower)
(Pearson et al. 2022).

z < 0.15 0.15 ≤ z < 0.30
Accuracy 0.884 0.850
Specificity 0.905 0.911

NPV 0.869 0.812
Total Galaxies 6965 27 299

Merger-candidate 1477 8718
Confirmed merger 251 1858

As the negative predictive value (NPV) and re-
call are worse in the higher redshift network, it
was expected the higher redshift merger candi-
date sample would be more contaminated.

As a simple example of the impact of mis-
classification, we consider the redshift evo-
lution of the merger fraction in Fig. 3. The
merger-candidate merger fraction shows a
rapid evolution with redshift which is much
higher than the simulation work from EAGLE
(Qu et al. 2017), Illustris (Rodriguez-Gomez
et al. 2015) and EMERGE (O’Leary et al.
2021). It is also much higher than the Lotz et al.
(2011) using mergers selected with traditional



W. J. Pearson et al.: Pitfalls of AI classification 101

Fig. 3. Merger fraction of the merger candidates
(red circles) and visually confirmed mergers (blue
circles) as a function of redshift. Merger fractions
from Lotz et al. (2011, dot-dashed purple line),
EAGLE simulation (Qu et al. 2017, solid red line),
Illustris simulation (Rodriguez-Gomez et al. 2015,
dashed green line), and the pair fraction trend from
the EMERGE simulation (O’Leary et al. 2021, dot-
ted blue line) are also shown.

methods. The merger fraction for the visually
confirmed mergers is inline with other works.

As shown, well trained networks can
still produce highly contaminated samples of
uncommon or rare astronomical objects. If
the classification and contamination rates for
galaxy mergers was also found for a sample
of ≈ 109 galaxies, roughly the expected num-
ber of galaxies from Euclid or Rubin-LSST,
then ≈ 300 × 106 galaxies would be identified
as mergers of which only ≈ 60 × 106 would
be true mergers. It is impractical to check the
≈ 300 × 106 merger candidates so care must
be taken in the future large scale surveys with
how we use the rare object classifications.

4. Conclusions

In this work, we have shown that using
both images and morphologies in neural net-
works improves merger classification. We also
demonstrated that networks good at identify-
ing rare classes potentially create highly con-
taminated samples, which has implications for
upcoming large area surveys.

In future work will plan to move simi-
lar techniques to identify pre-mergers, post-
merger and non-megers. We will also apply

similar archetectures to identify galaxy merg-
ers from images where Sérsic models of the
galaxies have been subtracted from the images.
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