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Machine Learning disclosing the edges
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Abstract. The next generation of telescope facilities and photometric projects promises not
only very large surveyed areas but also staggering depths. This observational step forward
will allow us to address new questions such as whether there is any Low Surface Brightness
feature related with a physically-motivated definition of the size of a galaxy. Here we in-
troduce galaxy truncations as a suitable size proxy fulfilling these conditions, with full ex-
planations in Buitrago et al. (2023) in prep. Crucially, if one is to infer such galaxy edges
or truncations for the plethora of galaxies to be imaged, the only way forward is to apply
Machine Learning to derive those. We conducted that study in Fernández-Iglesias et al.
(2023) in prep. using ultradeep Hubble Space Telescope imaging for a sample of over one
thousand disk galaxies up to z = 1 and the current proceedings highlight our more relevant
findings.

Key words. Galaxies: sizes – Galaxies: formation and evolution – Astroinformatics –
Machine Learning – Galaxies: Machine Learning

1. Introduction

Galaxy size is one of the few direct observ-
ables of galaxies but it has been very hard to
quantify because galaxies are intrinsically dif-
fuse objects. Many studies have proposed dif-
ferent measurements historically (for an ex-
cellent review consult Chamba et al. 2020).
Despite their usefulness, all these metrics were
arbitrarily established to a greater or lesser ex-
tent. However, the next generation of ultradeep
surveys and synoptic facilities opens up a new
window for determining the true extension of
these objects, as we enter in the era of Low

Surface Brightness (LSB) analyses enabling
the determination of galaxy edges or trunca-
tions.

These galaxy edges or truncations are sud-
den drops of the surface brightness, color and
mass profiles in the galaxies’ outer parts. They
visually coincide with the end of the galaxy
disk. They were firstly discovered in Van der
Kruit et al. (1979) in edge-on disk galax-
ies. The authors realized that, even integrat-
ing for longer times, the galaxies at study did
not change the extent of their surface bright-
ness profiles. Even though these LSB features
have been known for many years, it is only
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now that the depth of state-of-the-art observa-
tions allow us to find them. The reader should
also bear in mind the fact that truncations and
galaxy breaks have been misunderstood as the
same feature in some works exploring shallow
data, and that other publications prefer to use
the name truncations only for edge-on systems
(due to how these features were firstly recog-
nized). We will use interchangeably either this
name or galaxy edges throughout the current
proceedings.

The forthcoming era of LSB observations
is not only revolutionary in terms of depth but
also in the sheer amount of data to arrive at our
computers. For example, Euclid’s wide survey
(Euclid Collaboration , 2022) will image some
15000 deg2 of the sky. If we add this aspect
to the outstanding depths (3 mag deeper than
SDSS, and even 2 mag deeper for the drilling
fields) and Hubble Space Telescope (HST)-like
spatial resolution, the upshot is that this new
space telescope will analyse millions and even
billions of sources in the next few years. Thus,
the only way to deal with this plethora of ob-
jects will be to resort to Machine Learning
(ML), at least for pattern-recognition problems
such as the one we will present here.

2. Dataset and methodology

Buitrago et al. (2023) in prep. (B23) presents
a study of the galaxy edges for a sample of
1052 massive (Mstellar > 1010 M⊙) disk (accord-
ing to Huertas-Company et al. , 2015) galax-
ies at zspec < 1.1 observed with HST in the
CANDELS fields. These are among the deep-
est HST pointings to date, enabling the de-
tection of galaxy truncations without any fur-
ther complications. The catalogs with infor-
mation for these galaxies could be found in
Santini et al. (2015); Stefanon et al. (2017);
Nayyeri et al. (2017); Barro et al. (2019).
We took 12×12 arcsec stamps for these galax-
ies in the F606W (V), F814W (I), F125W (J)
and F160W (H) bands (400×400 pixels for the
ACS two first bands, resampled to 200×200
pixels to match the WFC3 last two bands). We
also created SDSS-equivalent restframe im-
ages (as in Buitrago et al. 2017), color im-
ages (subtracting these latter ones) and mass

Fig. 1. Example of an original HST RGB image
for our galaxy in our sample (left), the label image
created out of it (middle) and how the two over-
lap highlighting where the galaxy edge or trunca-
tion is (right). Mind that, because of the proximity
of a companion galaxy, the galaxy edge displays a
jagged shape.

images (following pixel-by-pixel the recipes in
Roediger & Courteau 2015). These three later
types of images will be called “astronomic
augmentations” (see Section 3).

The truncation values steem from the care-
ful study of the 1D profiles for all the im-
ages we mentioned in the previous paragraph
(see B23 for more details). The edges appear
as sharp drops in the surface brightness and
mass profiles. We consequently define our la-
bels as 200×200 pixel images with 1 as a value
for pixels belonging to the galaxy at study
and 0 otherwise. The galaxy pixels are defined
by an ellipse whose semi-major axis has the
galaxy edge value, with an axis ratio and po-
sition angle representative for the outer parts
of the galaxy in the reddest band (H) avail-
able (see Fig. 1). Following this rationale, the
edges/truncations are the pixels to be found in
the boundary between the galaxy pixels and the
rest of the pixels.

3. Machine Learning experiments and
results

We conducted semantic segmentation
by means of U-Nets neural networks
having various architectures (Resnet18,
Resnet50, EfficientNetB1, EfficientNetB2,
EfficientNetB6, DenseNet161, DenseNet201)
as encoders. All details could be found in
Fernández-Iglesias et al. (2023) in prep.
(FI23). We trained our Deep Learning models
using a weighted cross entropy loss function,
batch size 32, learning rate 10−3 and maximum
number of training epochs 1000. The metrics
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we utilized were Precision, Recall and the
Sørensen-Dice coefficient (harmonic mean of
the other two, and thus more robust to how
imbalanced our labels are). Our averaged
values for our Base experiment (taking into
account only the I, J and H images) for these
three metrics are 0.8545, 0.9433 and 0.8851
respectively.

Moreover, we added another four experi-
ments, taking into account the aforementioned
astronomic augmentations (see Section 2). We
called them this way because they are vari-
ations of the input data based on our astro-
physical knowledge. These extra experiments
were Visual (Base adding RGB images us-
ing the different possible combinations of the
HST bands), Sloan (Base and using the SDSS-
equivalent restframe bands), Color (Base plus
color images) and Mass (Base plus mass im-
ages). The introduction of these astronomic
augmentations improves the performance of
our deep learning models because all Dice val-
ues increase in comparison with the Base ex-
periment (see Fig. 2).

Nevertheless, the power of these astro-
nomic augmentations lies in the fact that the
induced variability makes the neural networks
learn different features. We created ensem-
bles to improve the quality of our segmen-
tation. Different algorithms combined their
pixel-by-pixel results using the mode (i.e.
a “democratic-vote”). Each ensemble utilizes
the results from our 35 segmentation net-
works (5 experiments times 7 different pos-
sible encoders) taking 3 of them at a time,
yielding a final 6545 possible ensembles.
Remarkably, 65% of them retrieve better (i.e.
greater) Dice values than the ones obtained
for individual models. The best configuration
is the one taking EfficientNetB6, Resnet18
and DenseNet161 trained with Mass-type as-
tronomic augmentations (Precision: 0.9016,
Recall: 0.9353, Dice: 0.9104).

4. Conclusions

Galaxy edges aka truncations are very promis-
ing features to allow us to finally derive
physically-motivated galaxy sizes. However, in
order to achieve our aims, it is necessary to

analyse sufficiently deep images that are also
conveniently reduced to preserve the LSB sig-
nal (Buitrago et al. , 2017; Akhlaghi et al. ,
2019). In addition, for the swarm of data to
arrive in the coming years from the synoptic
facilities, it will be mandatory to create the
Machine Learning tools to derive these quanti-
ties as the human astronomers will not be able
to visually check all the required inputs.

We derived the galaxy edge position for
a sample of 1052 intermediate massive disk
galaxies at z < 1.1 in B23. FI23, that is the
study from where this proceedings is based,
used the previous results as labels for a Deep
Learning study of the retrieval of these LSB
features. Specifically, it uses a series of U-Nets
with different architectures of neural networks
as encoders, in order to derive these truncation
positions. To ensure the machine learns as hu-
mans do, we created a series of “astronomic
augmentations”, i.e. augmentations with astro-
nomical meanings (surface brightness, color
and mass maps). By making use of them, the
metrics of our study improve in comparison
with the Base model.

The variability of inputs also ensures that
the neural networks learn in a different manner.
This is the reason why we furthermore built all
possible ensembles of the different combina-
tions of the neural networks available in order
to vote, on a pixel-by-pixel basis, which pix-
els belong to each galaxy at study and thus
determining the position of the galaxy edges.
Almost two thirds of such ensembles improve
the best model’s performance and thus our best
neural network uses this technique (combining
EfficientNetB6, Resnet18 and DenseNet161
using always the Mass astronomic augmenta-
tions).

Future facilities will transform our knowl-
edge of not only low-mass very distant galaxies
but also the high-mass low-z ones by deriving
the long-sought physically-motivated galaxy
sizes. This will have profound implications in
the galaxy assembly, both for the baryonic and
dark-matter components. Ours is a step further
in the application of this methodology for the
extremely large galaxy samples to arrive in the
near future. We also hope that similar tech-
niques and augmentations could be applied to
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Fig. 2. Layout of our U-Net configuration, using different images as inputs (including astronomic augmen-
tations and performing grouped convolutions). The final outcome will be another 200×200 pixel image that
will be matched with the galaxy label in order to derive the metrics that tell us how well we identify the
pixels that belong to the central galaxy, and consequently its galaxy edge or truncation.

tackle similar problems related with the visual
appearance of galaxies, like galaxy deblending
or the identification of tidal tails.
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