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Abstract. The morphology of a galaxy has been shown to encode the evolutionary history
and correlates strongly with physical properties such as stellar mass, star formation rates and
past merger events. While the majority of galaxies in the local universe can be classified
on the Hubble sequence, little is known about the different types of galaxies we observe
at high redshift. The irregular morphology of these galaxies makes visual classifications
difficult, and with the future of astronomy consisting of many ‘Big Data’ surveys we need
an efficient, and unbiased classification system in place. In this work we explore the use
of unsupervised machine learning techniques to preform feature extraction from galaxy
images to separate high redshift galaxies into different morphological types based on the
machine learning clusters. We expand on previous work by addressing observation biases
such as the orientation, apparent size of the galaxies and noise before extracting features,
thus reducing the number of clusters and forcing the network to learn meaningful features.
We then compare the extracted clusters’ physical properties, to investigate the separation
between the groups.
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1. Galaxy Morphology

Galaxy morphology can provide us with a win-
dow into understanding its evolution. It has
been shown that the morphology encodes the
past and ongoing formation modes of a galaxy,
which can give us an indication of how galax-
ies evolved throughout cosmic time (Holmberg
1958; Dressler 1980; Kauffmann et al. 2003).
The Hubble classification scheme describes the
morphologies of galaxies observed in the lo-
cal universe (Hubble 1926). This classification

scheme not only describes the visual appear-
ance of the galaxy, but it has been shown that
morphological type correlates strongly with
many intrinsic properties such as the SFR, age,
number of past merging events etc. However,
while this system has recently been shown to
describe galaxies up to very high redshifts z ≥
7 (Ferreira et al. 2022), the number of irregular
galaxies increases rapidly with redshift, thus
requiring an alternative description.

Galaxies at high redshift show much more
peculiar and clumpy morphologies (Noguchi
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1998; Conselice et al. 2005). This is due to
many reasons, some we understand such as the
cosmic star formation history.We know that the
star formation rate in the universe was max-
imum around z ∼ 2, meaning that galaxies
would have more star forming regions, leading
to more clumpy morphologies. We also know
that the merger rates were higher in these ear-
lier times, thus causing galaxies to show dis-
turbed morphologies with tidal disruptions and
multiple cores etc. However what is not under-
stood is how these galaxies evolved to those
that we observe today. This evolution can be
studied by investigating the evolution of mor-
phology with redshift.

The problem that we are interested in in-
vestigating then is how do we robustly clas-
sify these distant galaxies into self-similar
types? One solution that has proven success-
ful so far is citizen science projects such as
galaxy zoo whereby the general public visu-
ally inspects and classifies galaxies according
to the presence or absence of certain features
(Willett et al. 2017). While these classifications
have been used successfully in many studies
(Schawinski et al. 2014; Bamford et al. 2009;
Cardamone et al. 2009), with future ‘Big Data’
surveys expecting to image billions of galax-
ies this is unfeasible, and would take many
years to amass enough classifications. There is
also an issue of human bias that is imposed
when classifying galaxies due to the subjec-
tive judgement of the classifier which we do
not want when trying to draw conclusions from
the results. There is an obvious solution to both
these problems and one that has become popu-
lar in recent years – machine learning.

2. Method

In recent years Machine Learning (ML) has
proven to be very successful in astronomy and
has already been applied to the morphologi-
cal classification of galaxies with great suc-
cess. Supervised ML has been used to both
identify mergers (Ferreira et al. 2020) as well
as Hubble type classifications (Dieleman et al.
2015; Domı́nguez Sánchez et al. 2018; Cheng
et al. 2020). While these studies have proven
to be successful, they require prior knowledge
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Fig. 1. An example of our augmented images. Top:
Original CANDELS images. Middle: This shows
the galaxy images after they have been cleaned of
background sources. Bottom: Re-scaled and rotated
images.

of the data in order to have a labelled training
sample. This brings back the issue of human
bias within the labels as well as the issue of
having enough data to classify. One solution
to remove this bias from any future work, and
to improve the efficiency of these classifica-
tions, is to move towards using unsupervised
machine learning (UML) techniques. As the
name suggests, UML techniques require no la-
bels to train but uses only the data as an input.
For this reason UML methods can be a more
robust, and unbiased method for data analysis.

In this work we utilise a type of UML
network known as a Variational autoencoder
(VAE). The main idea behind an autoencod-
ing network is that of dimensionality reduc-
tion. Dimensionality reduction is the process
by which the number of features needed to de-
scribe some data are reduced. A VAE is com-
posed of two main components, the encoder
and the decoder. The encoder takes an input,
which in this example is an image of a galaxy,
and encodes the information into a lower di-
mensional representation of your data. This
lower dimensional representation is stored in
the latent space (aka feature space). The de-
coder then samples from this latent space to
create a reconstruction of your input. The VAE
is trained to compress your input data whilst
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Fig. 2. Top: Input images to encoder. Middle: Reconstructed images using three encoded features. Bottom:
Residuals showing how the reconstuctions have encoded all of the galaxy light and not noise.

minimising the reconstruction loss between it
and the output, decoded image. Because you
are losing information in this encoding the re-
constructions always tend to be smoother, and
contain only the main features that describe the
data. Data that have similar features will be
closer together within this feature space while
data with different features will be located in a
different region. The aim of this work is to en-
code the main features of our sample of galax-
ies and investigate the separation between them
in this feature space. If we can group points
that are close within this latent space we will
obtain a selection of galaxies that possess sim-
ilar morphological features resulting in a broad
and robust classification scheme.

2.1. Data Augmentation

One common issue that can arise with feature
extraction is the fact that the network is trying
to reproduce the input images with as few fea-
tures as possible. This causes features such as
shape, orientation, size and position to be en-
coded first as these will result in a smaller re-
construction loss than more finer details. These
features however are not intrinsic to the galaxy
and are in fact observational biases that we
have imposed on the data simply because of
our observation position on Earth. In our work
we want to address and remove these observa-
tional biases before trying to cluster our galax-
ies, thus allowing the feature space to be phys-
ically meaningful and without the risk of miss-

ing any other subtle features of the galaxies. To
do this we need to augment our data.

For our work, we use data from the
CANDELS survey as imaged by the Hubble
Space Telescope. In total we have 30488
postage stamp galaxy images from 2 ≤ z ≤ 7.
The augmentation steps we apply to our data
can be seen in Fig.1. First we remove back-
ground sources from our images using the gal-
clean (de Albernaz Ferreira & Ferrari 2018)
algorithm. The clean images can be seen in
the middle row. The next issue we address is
the orientation of the galaxies. As it has been
shown in previous works (Spindler et al. 2021)
this is one of the dominant features to a net-
work and so we rotate all of our galaxies to
prevent this from becoming an issue. The last
feature we address is the apparent size of the
galaxies. We re-scale all of our images to the
average petrosian radius of 10 pixels. This will
allow the network to focus on the finer details
of the images instead of using information en-
coding the size of the galaxies, which we are
not interested in. As our galaxies are all high
redshift, we also crop the images to remove
as much background as possible. The resulting
images can be seen in the bottom row of Fig.1.

3. Preliminary results

Utilising our augmented images, we first train
the network to encode the images into a small
number of features to ensure that our augmen-
tation process has removed the orientation ef-
fects from dominating the feature space. The
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Fig. 3. Box plots showing the different physical paramters for the 4 groups found using the density based
clustering technique HDBSCAN. Group -1 indicates noise, points that were not close to any dense regions.
In total, 9% of our sample is considered noise.

results from this can be seen in Fig. 2. It can
be seen that the network is able to encode the
general shape, elipticity and concentration of
our images. This is a good sign as we do not
see any orientation effects taking up any of
the encoded information. We can also see the
effect of information loss, our reconstructions
are very smooth and have removed the noise
from the images as well.

3.1. Clustering

The aim of our work is to be able to sepa-
rate our galaxies into different clusters based
on their intrinsic morphological features that
are extracted by our network. We apply two
different clustering algorithms to the feature
space, a Gaussian based method (Bayesian
Gaussian mixture model) and a hierarchical
density based algorithm (HDBSCAN). A fea-
ture of the type of VAE we are using in this
work means that the feature space can deviate
from a Gaussian distribution, so we found that
using the density based clustering we were able
to obtain a better separation of the groups than
with the Gaussian mixture model. This density
based method found four main groups for our
feature space, the properties of the galaxies in
each group are shown in Fig.3. We can see that
by encoding the data into just three latent di-
mensions or features, we can already split our
galaxies based on axis ratio, magnitude and a
slight variation in concentration

4. Conclusions and future work

The next step is to increase the number of fea-
tures that the network can use to encode the in-
formation, whilst still keeping the number of
dimensions small enough to be interpretable
and comparable to known physical properties.
Once we have determined the different popula-
tions of galaxies that exist we can then link this
with the redshifts of our sample to try to inves-
tigate how these groups evolve into the Hubble
Sequence we see today.
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