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Search for ultra-light axions with the polarization
of the cosmic microwave background
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Abstract. When coupled to electromagnetism via a Chern-Simons interaction, axion-like
particles (ALP) produce a rotation of the plane of linear polarization of photons known as
cosmic birefringence. Recent measurements of cosmic birefringence obtained from the po-
larization of the cosmic microwave background (CMB) hint at the existence of an isotropic
birefringence angle of β ≈ 0.3◦, currently excluding β = 0 with a statistical significance of
3.6σ. Were such measurement to be confirmed as a cosmological signal, CMB information
alone could constrain the ALP parameter space for masses mϕ ≲ 10−27eV and axion-photon
coupling constants gϕγ ≳ 10−20GeV−1.
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1. Introduction

Axion-like particles (ALP) are one of the most
popular candidates to explain dark matter and
dark energy (Marsh , 2016). They are described
by a parity-violating pseudoscalar field, ϕ,
that can couple to the electromagnetic ten-
sor and its dual via a Chern-Simons term in
the Lagrangian density, L ⊂ 1

4 gϕγϕFµνF̃µν.
Such an interaction makes the phase veloc-
ities of right- and left-handed helicity states
of photons differ, rotating the plane of lin-
ear polarization clockwise in the sky by an
angle β = − 1

2 gϕγ
∫
∂ϕ/∂tdt. This rotation is

known as cosmic birefringence because it is as
if space itself behaved like a birefringent crys-
tal (Komatsu , 2022).

Emitted at the epoch of recombination and
with its polarization angular power spectra ac-

curately predicted by the standard cosmologi-
cal model, the cosmic microwave background
(CMB) is the ideal tool to measure birefrin-
gence.

2. A tantalising non-null β signal

In the past, attempts at measuring β from
CMB observations have been limited by un-
certainties in the calibration of the detectors’
polarization angle. Recently, a novel tech-
nique proposed by Minami et al. (2019);
Minami & Komatsu (2020a) made possi-
ble the simultaneous determination of birefrin-
gence and polarization angles through the use
of Galactic foreground emission as a calibra-
tor. When applied to CMB data, this method-
ology yields a non-null isotropic birefringence
angle (Minami & Komatsu , 2020b; Diego-
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Palazuelos et al. , 2022; Eskilt , 2022), with
the tightest constrain to date, β = 0.342◦+0.094◦

−0.091◦
(68% C. L.), coming from the joint analysis of
WMAP and Planck data (Eskilt & Komatsu ,
2022).

Although robust against instrumental sys-
tematics (Diego-Palazuelos et al. , 2023), this
measurement can be biased by the EB cor-
relation of Galactic dust. Diego-Palazuelos et
al. (2022) proposed two independent ways to
model dust EB: one based on the misalignment
between dust filaments and Galactic magnetic
field lines (Huffenberger et al. , 2020; Clark
et al. , 2021), and another based on the dust
templates produced in Bayesian component-
separation analyses that fit parametric models
to CMB data (Planck Collaboration IV , 2020).

Acknowledging the current limitations of
both models, a better understanding of polar-
ized dust emission is needed to obtain a defini-
tive measurement of β with this methodology.
Alternatively, improving the precision of cal-
ibration techniques to accuracies of the order
of 0.01◦ will allow a high-significance mea-
surement of βwithout relying on Galactic fore-
grounds.

3. Implications for ALP

In a first attempt at discerning the origin of the
signal, Eskilt (2022) studied the frequency de-
pendence of β across the 30 through 353GHz
frequency range covered by Planck. That study
concluded that the data favors a frequency-
independent β like that predicted by a Chern-
Simons coupling to a pseudoscalar field while
disfavoring other possible origins such as the
Faraday rotation from Galactic or primordial
magnetic fields. Thus, if confirmed as a cos-
mological signal, the β ≈ 0.3◦ found in CMB
data could be attributed to an ultra-light ALP.

Following the prescriptions of Fujita et al.
(2021), Figure 1 illustrates the constraining

power that CMB observations alone would
have on ALP parameter space if the β mea-
surement was confirmed. The sensitivity to the
ALP-photon coupling is derived assuming a
spatially flat Friedmann-Lemaı̂tre-Robertson-
Walker universe and adopting a quadratic po-
tential V(ϕ) = 1

2 m2
ϕϕ

2 for the ALP field.

We assume the largest ALP abundance al-
lowed (Planck Collaboration VI , 2020), the
latest constraints on the tensor-to-scalar ratio
r < 0.032 (Tristram et al , 2022), and an
isotropic birefringence angle of β = 0.30◦.

Since the ALP abundance is only bounded
from above, it is not possible to put an up-
per constraint on the ALP-photon coupling
in Figure 1. ALP in such a mϕ-gϕγ range
could be responsible for dark energy and rule
out some simple Grand Unified Theory mod-
els (Agrawal et al. , 2022).

4. Conclusions and outlook

If confirmed as a cosmological signal, the mea-
sured angle of β ≈ 0.3◦ would have profound
implications for fundamental physics. It could
be attributed to a Chern-Simons coupling to a
light pseudoscalar field like that of ultra-light
ALP (Nakatsuka et al. , 2022) or early dark
energy (Murai et al. , 2023). A more detailed
study of the EB angular power spectrum is re-
quired to distinguish between these two ori-
gins.

In addition, it would provide evidence of
parity-violating physics outside the weak in-
teraction (Lue et al. , 1999). Intriguing signs
of parity violation at cosmological scales have
also appeared recently in studies of galaxy
spins (Motloch et al. , 2022) and the four-
point correlation function of galaxies (Philcox
, 2022; Hou et al. , 2022).

To confirm this measurement, we must
continue the search in independent datasets
from ongoing and future CMB experiments.
Improved calibration sources (Cornelison et al
, 2022) and a better understanding and model-
ing of Galactic dust emission (Cukierman et al.
, 2022; Vacher et al. , 2022) will be needed to
obtain a definitive measurement of β.
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Fig. 1. Crude constraints on the axion mass and axion-photon coupling obtained from the scaling laws
derived on Fujita et al. (2021). The shaded regions have been excluded by OSQAR (Ballou et al. ,
2015) (orange), CAST (Anastassopoulos et al. , 2017) (blue), SN1987A (Payez et al. , 2015) (green), and
Chandra (Berg et al. , 2017) (pink). Birefringence contours (purple) assume an isotropic birefringence angle
of β = 0.30◦, a tensor-to-scalar ratio of r < 0.032, and the largest ALP abundance allowed. At the mass
range considered, this last statement implies that axions would make up the entirety of dark energy.
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